
Humboldt-Universität zu Berlin

Mathematisch-Naturwissenschaftliche Fakultät II

Institut für Informatik

Simloid

Evolution of Biped Walking Using Physical Simulation

Diploma Thesis

Daniel Hein

dhein@informatik.hu-berlin.de

October 27, 2006

Erklärung
Hiermit erkläre ich, die vorliegende Diplomarbeit selbständig und nur unter

Zuhilfenahme der angegebenen Literatur verfasst zu haben.

Ich bin damit einverstanden, dass ein Exemplar dieser Arbeit in der Bibliothek

des Instituts für Informatik der Humboldt-Universität zu Berlin ausgestellt

wird.

Berlin, den 1. November 2006

Daniel Hein

Abstract. Locomotion can be defined as the capability for a living be-

ing or an inanimate object to move from one place to another. It is an

essential task for any component of the animal world. In nature there

are many different examples of locomotion means, such as legs, wings,

fins. In human beings the evolution lead to the adoption of biped loco-

motion, which is the prerogative of few species.

Anthropomorphic fascination and the advantages of biped locomotion

in environments with discontinuous support are among the reasons why

walking and running biped robots have become a popular area of re-

search. Biped robots could walk in almost any type of terrain included

those that are impossible for robots with wheels. Biped robots com-

pared with other type of robots are better skilled for certain works and

have a better degree of mobility especially in environment with obsta-

cles.

But controlling a biped robot with a high degree of freedom to achieve

stable movement patterns is still an open and complex problem. Thus,

developing of biped robots controlling algorithms have become an im-

portant field of research. With growing computational power of com-

puter hardware, high resolution realtime simulation of such robot mod-

els becomes more and more applicable. This thesis presents a physical

simulation of a 19 degree of freedom real biped robot model and the ap-

plication of evolutionary algorithms to generate and optimize walking

pattern generation.

I

II

Contents

Abstract I

Table of Contents III

List of Figures X

List of Tables XI

1 Introduction 1

1.1 Problem Description. 1

1.2 Related Work. 2

1.2.1 Model Based Approach. 3

1.2.1.1 ZMP Based Approaches. 3

1.2.1.2 Inverted Pendulum Model. 4

1.2.2 Dynamics Based Approach. 4

1.2.2.1 Passive Dynamic Walking. 4

1.2.2.2 Central Pattern Generator. 6

1.2.2.3 Ballistic Walking 7

1.3 Outline . 7

2 Bioloid Robot 11

2.1 RoboCup .11

2.2 Bioloid .12

2.3 Comparing Joint Drives. 13

3 Simulation Environment 15

3.1 Motivation. .15

III

3.2 ODE .17

3.2.1 Body and Joint Primitives. 17

3.2.2 Collision Detection. 18

3.2.3 Simulation Loop . 19

3.3 Simloid - Simulation of the Bioloid. 20

3.3.1 Simulation of servo motor joints. 22

3.3.2 Comparing Bioloid - Simloid 23

3.4 Architecture. .24

3.4.1 Simulated World and Main Loop. 24

3.4.2 Scene Description Module. 25

3.4.3 Controller Module . 27

3.4.3.1 PID Controller. 28

3.4.3.2 TCP Controller 29

3.4.3.3 Keyframe Controller. 30

3.4.3.4 Sine Nx Controller. 31

3.4.3.5 Neural Oscillator Controller. 31

3.4.4 Evolution Module . 31

3.4.4.1 Task Modules. 31

3.4.5 Simulation speed. 32

4 Motion Generation 35

4.1 Keyframe-Transition Approach. 35

4.2 Cyclic Function Approach. 37

4.2.1 Partial Fourier Series. 37

4.2.2 Symmetry Assumption. 39

4.2.3 Evolution Setup and Results. 39

4.2.3.1 Bootstrap Evolutions. 42

4.2.3.2 Incremental Evolutions. 45

4.3 Neural Oscillator Approach. 47

4.3.1 Two Neuron Networks. 47

4.3.2 SO(2)-Networks . 48

4.3.3 Controller Topology . 49

4.3.4 Symmetry Assumption. 50

4.3.5 Evolution Setup and Results. 51

IV

4.3.6 Sensor Coupling. 54

4.3.6.1 Harmonic Synchronization. 55

4.3.6.2 Impulse Synchronization. 55

4.4 Comparing Joint Trajectories. 58

4.5 Short Excursion: Other Tasks. 60

5 Knowledge Transfer to Real Hardware 63

5.1 Types of Knowledge . 63

5.2 Motion Export. 64

5.3 Experiments and Results. 65

5.4 Discussion. .67

6 Conclusions 69

6.1 Summary and Discussion. 69

6.2 Outlook .70

6.2.1 Conceptual. 71

6.2.2 Technical. 71

6.3 Acknowledgments . 72

A Evolution Setups and Parameters 73

Bibliography 77

V

VI

List of Figures

1.1 Oldest record of PDW: Walking toy by G. T. Fallis (1888). 5

2.1 Bioloid: Above: Front view and back view without PDA and batteries. Be-

low: Servo motor AX-12 at hip joint, acceleration sensor board at shoulder.12

3.1 Ideal course of simulation benefit to solve a problem in real world. Due to

continuously comparing and adjusting between real and simulated world

behavior, in practice the phase of modeling often extends up to the end of

the experiments phase.. 16

3.2 ODE joint types: Above: ball and socket joint, hinge joint. Below: slider

joint, universal joint. 18

3.3 Joints are constraints: A joint constrains the relative movement of the two

connected bodies along one or more axes. Left: Contact joints prevent two

bodies from inter-penetrating. Right: Broken ball and socket joint con-

straint. ODE performs a steady error reduction by applying additional cor-

recting forces. 19

3.4 Real and simulated world: Above: Real Bioloid, Simulated Bioloid (Sim-

loid). Below: Real servo motor torque and friction experiment setup, Sim-

ulated servo motor torque and friction experiment setup.. 21

3.5 Basic modules of the simulation environment.. 24

3.6 Flow chart of a simulation run. Simplified view for a single run.. 26

3.7 Overview about presently implemented controller modules.. 27

3.8 Evolution setup: Main modules of the simulation environment. The evolu-

tion module performs an artificial evolution to solve/optimize a given task.

The tasks are pluggable.. 32

VII

4.1 A first weak validation of the simulation: The stand up motion is

keyframe-transition based and was developed on the real Bioloid. The

(raw) transfer of the identical keyframe structure to simulation shows sim-

ilar behavior. .36

4.2 Example wave shapes for parameter spaceN = 1, N = 2 andN = 3.

Graphs show one period. With growingN more complex shapes are possible.38

4.3 Flow chart of an evolution run and illustration of simulation – evolu-

tion/task module correlation. The dotted arrows describe the communi-

cation between the simulation and the evolution module. Further the two

relevant task dependent operations are connected with the task module.. . 41

4.4 Generation of the new generation: Process of selection, crossover/copy

and mutation, and the interrelationship of some evolution parameters.. . . 43

4.5 Fitness developing of evolution runs for parameter spaceN = 1 (above),

N = 2 (center) andN = 3 (below). Meanwhile the fitness graphs forN = 1

andN = 2 remain static after the first 12.000 generations, the graph for

N = 3 shows a small but steady gradient.. 44

4.6 Fitness developing of evolution runs applying the ”incremental” evolu-

tion: Above: First evolution run, usingN = 1 parameter space. Center:

Evolution run in parameter spaceN = 2. First generation was initialized

by final best individual ofN = 1 evolution run. The covered distance

could be enhanced from 1.74m to 7.43m. Below: Evolution run in param-

eter spaceN = 3. First generation was initialized by final best individual

of N = 2 evolution run. The covered distance could be enhanced from

7.43m to 8.07m. 46

4.7 A two neuron network with recurrent connectivity and no bias terms.. . . 48

4.8 Example of a SO(2)-network output: Attractor in (a1,a2)-space (left), and

output signals of neuron 1 and 2 (right) forα = 1.1,ϕ = 0.5. Graphs show

the initial phase up to reaching the quasi-attractor range within the first

100 time steps. The initial activation was set toa1 = 0.01,a2 = 0.0. 49

4.9 Topology of the neural net controller. Each joint’s trajectory is given by a

dedicated neuron, which derives its activation by the two oscillating neu-

ronsN1, N2 and a bias termθ j . 50

VIII

4.10 Fitness developing of evolution runs using the neural oscillator approach.

Above: Evolution without symmetry assumption. Center: Evolution with

symmetry assumption. Below: ”Fine tuning” of best individual with sym-

metry assumption. 52

4.11 Evolution of Walking Pattern: Example of evolved walking pattern with

neural oscillator approach. Pictures show start of walking and first steps.

The displayed motion reaches a walking speed of about 0.45m/s. 53

4.12 Dynamics of the displayed individual in figure4.11. Attractor in (a1,a2)-

space (left), and output signals of neuron 1 and 2 (right). Evolved synap-

tic weights of the neural oscillator:ω11 = 1.166865,ω12 = 0.610873,

ω21 = −0.467230,ω22 = 0.834088. Graphs show the initial phase up to

reaching the quasi-attractor range within the first 100 time steps. The ini-

tial activation is set toa1 = 0.01,a2 = 0.0. 53

4.13 A two neuron network with a coupled external harmonic oscillator.. . . . 56

4.14 Example of a harmonic synchronization: Left: Attractor in (a1,a2)-space

of the two neuron oscillator without and with coupling. Right: Output of

the two neuron oscillator without and with coupling. The SO(2) oscillator

parameters are:α = 1.1, ϕ = 0.5, the chosen synaptic coupling of the ex-

ternal oscillator isω1s = 0.2. The external oscillator generates a sinusoidal

shape with frequency of 5 periods per 100 time steps. After coupling the

two neuron oscillator synchronizes from 8 periods per 100 time steps to

the external oscillator’s frequency.. 56

4.15 A two neuron network with a coupled external impulse generator.. 57

4.16 Example of an impulse synchronization: Output of the two neuron oscil-

lator. The vertical lines indicate the impulses. The SO(2) oscillator param-

eters are:α = 0.9, ϕ = 0.5, the chosen synaptic coupling of the external

oscillator is set toω1s = 1.0. The neural oscillator synchronizes with the

irregularly clocked impulses of amplitude 1.0. 57

4.17 Comparison of joint trajectories for hip (upper row), knee (center row)

and ankle (lower row) joint of the right leg. Graphs are taken from a N2

individual (left column), neural oscillator individual (center column) and

human (right column). 59

IX

4.18 Fitness developing of evolution runs applying turning (above) and right-

wards walking (below) task. The underlying motion generation is a neural

oscillator architecture, without symmetry reductions.. 61

5.1 Exporting of simulation results: The keyframe exporter module tracks

all target joint trajectories during a motion and records correspondend

keyframes at a configurable time resolution.. 65

5.2 Example of sampling a N2 knee’s target trajectory with a samling fre-

quency of 10Hz. Note that the target angles of the keyframes are quantized

to the AX-12 servo motor’s control graduation (approx. 0.29◦). 65

5.3 Transfer of motion pattern to hardware: The generated motion on the real

robot is similar to the simulated one, as long as it acts free (above). The

’grounded’ real robot needs manual help in contrast to its simulated coun-

terpart (below). 66

X

List of Tables

2.1 Comparing muscle and servo driven joints. The different design of the

joint drives causes completely different characteristics regarding capacity

of walking behavior. 14

3.1 Comparing available sensory information between real and simulated robot.30

3.2 Available (at present identical) actuation commands of real and simulated

robot. .30

4.1 Overview about parameter dimensions for 19 joint trajectories using par-

tial Fourier series as cyclic functions. Comparison between raw and re-

duced parameter space with symmetry assumption.. 40

4.2 Summary of most important evolution parameters for the bootstrap evolu-

tions. .43

4.3 Summary of most important evolution parameters for the neural oscil-

lator evolutions.3Note that best evolution results were found without(!)

crossover, thus mutation rate was increased to 0.9. 54

4.4 Overview about the offset and amplitude properties of the trajectory

graphs shown in figure4.17. The percentage is related to the sum of hip,

knee and ankle amplitude and gives a (weak) characterization, how the

joints are used during walking motion.. 60

A.1 Parameters for bootstrap evolutions with cyclic function controller (Figure

4.5). .73

A.2 Parameters for incremental evolutions with cyclic function controller (Fig-

ure4.6). .74

A.3 Parameters for evolutions with neural oscillator controller (Figure4.10). . 75

A.4 Parameters for evolutions with neural oscillator controller (Figure4.18). . 76

XI

Chapter 1

Introduction

The subject of biped motion is a wide complex theme, that imports biological, phys-

ical, mechanical and mechatronical aspects. Within the field of humanoid robotics

research further topics of controlling architectures and autonomous decision-

making are raised: How to achieve stable biped motions? How to generate an

energy-efficient walking? How to control all joints to achieve a specific aim?

This chapter gives a brief introduction into the topic of biped motion generation.

In the face of the complexity and breadth of this subject it tries further to illuminate

some related questions and introduces to some prerequisites to understand the pro-

cessed problem.

1.1 Problem Description

Given a certain biped entity (e.g. a robot) the biped motion problem can be de-

scribed as the control task of all joint actuators, given certain sensory informations

to achieve a specific target. This is very general, but the problem itself depends on

what actuators are given (e.g. muscles, motors), how the actuators are controlled

(e.g. muscle contraction is stimulated by electrical impulses transmitted by the

nerves vs. electricity causes servo motor torques or positional control via control

circuit), what sensory information is provided (e.g. touch sensors, balance sensors,

actuator force and/or position feedback sensors) and finally what target is pursued

(e.g. stand up, balancing stand, walk, turn, kick, etc.).

Among some experimental actuators in humanoid robotics at present the com-

monly applied actuators are servo motor drives. Servo motors are well approved in

2 CHAPTER 1. INTRODUCTION

industry robotics for years and there is a wide range of available types, regarding

e.g. size, torque or mechanical properties. Servo motors are typically driven via a

control circuit supporting target positioning or target velocity setting. The most es-

tablished control circuit is the PID controller, which is shortly explained in section

3.4.3.1. Anyhow, servo motor drives do not have implicitly the best properties for

generating a human like motion behavior - see section2.3.

Regarding the use of control circuit driven servo motors, the problem of biped

motion generation can be reduced to the trajectory generation problem. The trajec-

tory based approach points to the task of generating an ideal target angle function

(= target trajectory) for each joint drive (= servo motor), given the available sensory

information and the task target.

Another open question about biped locomotion refers to the higher level control-

ling of motion behavior: Meanwhile e.g. walking itself as a basic skill corresponds

to a reactive and regular motion behavior without the need for higher level control-

ling, the task of piloting to a specific target needs a higher (deliberative) mechanism,

that chooses, starts, stops and adjusts the lower basic skills using the feedback in-

formation by the sensors. Different architectures of information and control flow

on specific robot types are already examined [29, 34], a general approach even for

biped is still open to be discussed.

1.2 Related Work

Recently many robotics research groups have developed humanoids in academic in-

stitutes [21, 16], and in commercial companies [22, 58, 56]. In spite of the amount

of already published work, there are few studies concerning whole body movement

of a humanoid robot [37, 28]. Ogino [30] states two difficulties in generating hu-

manoid behavior that e.g. a wheel type robot does not have: The first one is the

large number of degrees of freedom (DoF). This causes explosion of combinations

of motions that should be examined. The other is non-linear motion and intrinsic

instability of a body balance. This makes it difficult to search without falling down

in exploration space.

However, the general proposed methods for generating humanoid motions can

be mainly categorized into two groups. One is themodel based approach, and the

other is themodel-free approach. In the former, a designer precisely constructs a

1.2. RELATED WORK 3

physical model of the target system and builds a controller based on the precise

model. In the latter, it is more important to make use of the intrinsic dynamics of

a robot or to associate the sensor information with motions, instead of using the

controller based on a physical model. For that reason, this approach has been at-

tracting many researchers and it is called theembodiment approach[5] or dynamics

based approach[20]. Masaki Ogino [30] gives a good status quo about present ap-

proaches, which are briefly discussed in the following sections.

1.2.1 Model Based Approach

Supposing that all information concerning the interaction between a robot and the

environment is available in advance, a designer can predict the dynamics of the

whole system and build a controller based on prediction. Conversely, a designer

processes sensor information so that he/she can comprehend the whole system. One

of the common features in this approach is to set the reference trajectories for each

joint angle. The basic ideas for calculating the trajectories differs from methods to

methods. The two well-established representatives of this approach are the Zero

Moment Point (ZMP) and the inverted pendulum.

1.2.1.1 ZMP Based Approaches

The basic idea of the Zero Moment Point approach is to keep the projected point

of center of mass (CoM) of a robot within the polygon area of the ground touching

legs. The ZMP can be defined as the point on the ground where the total moment

generated due to gravity and inertia of the moving system equals to zero [23, 26].

In terms of bipedal walking this means, the ZMP has to be kept always within the

area of the foot of the support leg. Although ZMP originally refers to static motion

generation, it was proposed so that the basic idea for the stability can be extended

to the dynamic walking as well.

In the approaches based on the ZMP index, the reference trajectories to be fol-

lowed by high gain PID1 controllers are designed so that ZMP always exists within

the polygon consisting of the support legs. However, the ZMP approach requires

an exact physical model of the robot as well as precisely working joint actuators to

ensure the exact following of the calculated trajectories. As an example, Takanishi

1see section3.4.3.1

4 CHAPTER 1. INTRODUCTION

group in Waseda University presented the humanoid robot WABIAN [43], where

the trajectories of the arms, legs and ZMP were described by Fourier series. The

coefficients to ensure the ZMP conditions were determined in simulation.

1.2.1.2 Inverted Pendulum Model

In the single support phase human walking can be modeled as an inverted pendu-

lum. Within a simple (kneeless) biped model, the swinging leg is represented by a

regular pendulum, while the standing (or supporting) leg is represented by an in-

verted pedulum. The standing leg is to be controlled by the hip joint’s torque. The

corresponend dynamics equations of the model may be found by the Lagrangian

method [8].

As an example, Kaneko et al. presents in [46] the application of a 3D linear

inverted pendulum model to generate the walking pattern. Kajita et al. modeled

a simplified robot in which the legs were massless, the upper body was a rigid

inertial element and the robot walked with the center of mass at a constant height

[45]. Komura et al. simulated human gait motion when muscles are weakened with

appliance of an enhanced version of three-dimensional linear inverted pendulum

model [1].

1.2.2 Dynamics Based Approach

This section presents some studies in the dynamics based approach. Considering

the originating idea, they can be classified into three groups: The passive dynamic

walking (PDW) approach, the central pattern generator (CPG) approach and the

ballistic walking approach.

1.2.2.1 Passive Dynamic Walking

In the passive dynamic walking approach, the biped walks down on a shallow slope

without any actuator. The only operating force descends from gravity. The walking

motion is the result of two pendulums (the legs) swinging in their natural frequency.

The mechanical design of the legs, such as length, mass distribution and foot form,

determines the stability of the walking motion. The probably oldest record of a

PDW is the patent about the shape of the feet of a walking toy by G. T. Fallis [9]

(see fig.1.1).

1.2. RELATED WORK 5

Figure 1.1: Oldest record of PDW: Walking toy by G. T. Fallis (1888)

Tad McGeer was the first, who applied the PDW idea in robotic research field.

In 1990, he built a two dimensional bipedal robot with knee joints and curved feet

[52, 53]. Leg length, mass, and foot shape were designed so, that the robot was

able to walk down a three-degree slope with no actuators and no control system.

Expanding on McGeer’s work, a team of researchers at Cornell [42] constructed

a three dimensional PDW that could walk the length of a three degree, five meter

ramp. The interesting part of this research was, that due to the using of the intrin-

sic behavior of the robot’s morphology an efficient and natural looking walking

emerged. This demonstrated for the first time that the morphology of a robot might

be more important than its control system. It also set a benchmark for walking ma-

chine efficiency. The estimated amount of potential energy used by this walker was

only three watts.

6 CHAPTER 1. INTRODUCTION

1.2.2.2 Central Pattern Generator

Vertebrate animals are thought to have neural basis for locomotion in spinal cord,

named central pattern generator (CPG) [50, 51, 2]. Central pattern generators are

circuits which are able to produce periodic signals in a self-contained way, i.e. with-

out having any rhythmic input to themselves. These rhythmic activities can be ini-

tiated by a simple non-oscillating (tonic) signal. In vertebrates, the CPGs consist

of several oscillatory centers in the spinal cord. In legged animals, the locomotor

CPGs often contain several centers that control the different limbs. These are fur-

ther decomposed into subcenters for each joint which, in turn, have divided control

for flexor and extensor muscles. Although CPGs do not necessarily need any sen-

sory feedback to generate oscillatory output for the motor neurons in animals, it

is important to coordinate the activities of the different oscillatory centers and to

adjust the patterns to the changes in the environment. Sensor feedback is e.g. used

to promote the switch from flexion to extension once the joint has reached its most

posterior position.

In order to build structures with similar properties as the neural oscillators found

in animals, several mathematical models have been proposed, e.g. [3, 13, 35]. Mat-

suoka proposed a mathematical model of CPG and demonstrated that the combina-

tions of simple neural models can generate the neural activities for biped locomotion

[24], which was used in several biped simulations (e.g. [44]) and in real robots (e.g.

[12]).

What these models have in common is that they all are able to produce contin-

uous oscillation signals when they are stimulated by a tonic input. By coupling the

neural oscillators they are able to synchronize their frequencies. Two brief examples

of synchronization by sensor coupling are shown in section4.3.6.

One of the difficulties in application of CPG model to real robots is to determine

the coefficients of neural connections. This is the main reason why genetic algorithm

have been often used to solve this problem in general [4, 18]. Another problem is

that almost all robots employs the proportional and derivative control for motor

control in which the desired angle and angle velocity should be given, whereas, in

human model, the outputs of the CPG neurons are used as torque (see also section

2.3).

1.3. OUTLINE 7

1.2.2.3 Ballistic Walking

The ballistic walking model was originally introduced by Mochon and McMahon

[54, 47]. The idea of this model is based on the observation of human walking, in

which the muscles of the swing leg are activated only at the beginning and at the

end of the swing phase. Thus, the model starts with a certain initial torque at the

beginning of a leg’s swing phase. Afterwards the leg moves only under its inertia

and gravity, wherefore this model is called ”ballistic”. In the end of the swing phase

again a torque is applied to ensure a certain entry leg angle for the beginning of the

ground contact (or support) phase. Variant from this model, Ogino [30] defines the

”ballistic walking family” as the walking controllers, in which the movement of the

swing leg is governed by the gravitational and the inertial force in the middle of the

swing phase.

In practice, several robots were presented with ballistic walking controllers (e.g.

[25, 15]). Delft Biped Laboratory of Delft University in Holland built real robots

with pneumatic actuators, which were only used for the moving of the swinging

leg [27]. To ensure stability of the robot’s walking, the robot itself was designed so

that it could realize passive dynamic walking without any actuation. Interestingly,

although pneumatic actuators are difficult for positional control, they could be suc-

cessfully applied for this type of motion generation. Different actuation timings and

working pressures of the pneumatic ”muscles” allow different robust biped walking

motions of the robot.

The ballistic walking approach is also a good source for exploring energy ef-

ficient walking pattern. Ogino demonstrates in [30] several biped simulations with

ballistic walking controllers for up to seven DoF robots. The parameters of the con-

trollers were determined by a higher level learning module to minimize the overall

energy consumption.

1.3 Outline

The thesis at hand concentrates on the question, how the task of biped walking of a

high DoF servo motor driven robot can be generated and described. Due to the high

complexity of the underlying target system – the Bioloid robot, which is presented

8 CHAPTER 1. INTRODUCTION

in chapter2 – robot’s kinematic and non-linear behavior of the servo motor joints,

a model-based approach is hardly applicable.

The aim of this work is to explore appropriate control structures which are po-

tentially able to generate robust biped motions of the target system. Certain parame-

ter instances of the structures are to be find with the appliance of genetic algorithms.

Two different low-level architectures generating joint target trajectories are pre-

sented and compared. Due to the walking task and the servo motor’s properties, the

presented approaches derive mainly from CPG approach. The architectures are ap-

plied to a physical simulation of the Bioloid biped robot. Further it is shown, how

parameter sets for the individual architectures can be found using evolutionary algo-

rithms. It is shown, that even with simple architectures without any sensor feedback

a robust and fast biped walking can already be generated. Furthermore, two exam-

ples demonstrate, that the presented evolution setup and controlling structure can be

applied also for other tasks than walking.

The thesis on hand is split into six chapters. After a brief introduction into the

field of humanoid biped motion generation and presenting the basic approaches

regarding biped locomotion within this chapter, the second chapter presents the un-

derlying target system of this thesis – the Bioloid robot. It illuminates the robot’s

actuators and sensors. Furthermore it discusses the given joint actuators in face of

the biped walking problem. The question of appropriate joint actuators is not further

discussed within this thesis, but should classify the thesis’ course and results.

The third chapter presents the simulation software, that was implemented within

this thesis and which forms the base of this work. It introduces into the applied

physics simulation libraryODE, presents the simulated Bioloid robot, and explains

the main parts of the simulation environment.

The fourth chapter deals with the core topic of this thesis: The biped robot’s

motion generation. It presents three different approaches how to control the joints

of the robot to generate walking pattern. Moreover, it illustrates the processed ex-

periments in the simulation and the application of artificial evolution to determine

optimal parameter sets for the particular approaches.

Chapter five engages in the question, how the gathered knowledge of the simu-

lation’s outcome can transfered to the real world. The types of gathered knowledge

are classified and some processed real robot experiments are briefly discussed.

1.3. OUTLINE 9

The closing chapter summarizes and discuss the work, and gives a review about

possible continuing topics that could carry on the processed work.

AppendixA lists the detailed parameters of the evolution setups for all drawn

evolution runs. This data is intended for anyone, who wants to reproduce or continue

the processed evolutions.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Bioloid Robot

This chapter presents the target system of the thesis’ approaches – the Bioloid robot,

which constitutes the archetype of the physical simulation presented in chapter3.

Furthermore this chapter discusses the suitability of the given servo motor joints to

generate a human like walking behavior.

2.1 RoboCup

For having an exchanging and discussion platform for recent research around

robotics, the RoboCup [39] was founded in 1998. The RoboCup is an annual in-

ternational event where participating teams play soccer against each other in sev-

eral leagues. The different leagues point to different areas of research within the

field of robotics – from mechatronical design of the robots up to software archi-

tectures and controlling strategies for constituting autonomous team work. The aim

of the RoboCup Federation is to build a competitive team consisting of completely

autonomous humanoid robots that have a realistic chance of winning against the

human world champion soccer team by the year 2050.

The Humboldt University participates in 2006 for the first time in RoboCup’s

humanoid league. The deployed robots are based on a commercial construction kit

named Bioloid.

12 CHAPTER 2. BIOLOID ROBOT

Figure 2.1: Bioloid: Above: Front view and back view without PDA and batteries.

Below: Servo motor AX-12 at hip joint, acceleration sensor board at shoulder.

2.2 Bioloid

The commercial biped robot construction kit Bioloid is a 19 DoF robot and consists

of approximately 700 basic parts. The assembled robot has a shoulder height of

34cm, weigh approximately 2.3kg and is actuated by 19 servo motorsAX-12. All

servo motors are controlled by a bus connector, allowing to set control commands

and to get sensor information. The main control commands contain instructions for

setting the goal position, the moving speed and the torque limit. Further, each servo

motor provides informations about present position, speed and load. The kits were

upgraded by acceleration sensors, developed and manufactured by Manfred Hild et

al. [14], in total 8 sensors per robot, each sensor with two perpendicular sensoraxes.

All acceleration sensors and servo motors are connected by a 100Hz clocked serial

bus, calledspinal cord. Furthermore for having a visual sensor, a camera is mounted

on the body, controlled by two additional servo motors. Since the camera servos do

2.3. COMPARING JOINT DRIVES 13

not control limb parts, they are not considered in this thesis. Figure2.1 shows the

assembled robot with the acceleration sensor boards.

2.3 Comparing Joint Drives

Biped motion and in particular biped walking has its archetype in human nature.

But considering the actuators shows, that the control mechanism of human joint

actuators is critical different to the mechanism of an electrical servo motor joint.

Most of human single dimension joints (one degree of freedom, e.g. knee, el-

bow) are more dimensional controlled: To exemplify consider the human elbow

joint: To control the lower arm a human has two indepent muscle actuators - the

biceps (flexor) and the triceps (extensor). Both muscles can be contracted inde-

pendently, hence four general states of control activation are possible: With both

muscles released the lower arm is laid-back and follows all external forces. A hu-

man uses this state e.g. to move down the lower arm by using the (external) gravity.

When activating one of both muscles, the lower arm gets accelerated, for example

for moving up or for throwing a ball. With both muscles tensioned, the arm is fixed

at a certain position, but with elastic and damping properties. This state can be ap-

plied e.g. to position the arm or to catch a fast ball. Due to the elastic and damping

properties of this state, the joint is able to absorb high kinetic impulses without

getting damaged.

In contrast, a servo motor drive has only one control dimension: the current of

the motor itself (what is done in fact in servo motor technique is a pulse-width mod-

ulation, so the control dimension consists in the pulse width modulation ratio). This

enables to apply a certain force at the joint, but only in one direction at one time.

Thus, by nature it is not possible to tense it at a position, similar to human joints.

Only together with a control circuit it is possible to fix and position the joint at a

certain angle. Anyhow, what is done with a control circuit is a steady comparing

between present and target angle and to correct with the one dimensional control

mechanism. Additionally, a servo motor has gears between the motor and the (out-

going) driven axis. Due to the ratio and the inner friction of the gears, a servo motor

is not capable of quickly absorbing high kinetic external impulses. Catching a fast

ball would face a joint break instead of absorbing the kinetic energy of the ball.

14 CHAPTER 2. BIOLOID ROBOT

Type Muscle Servo Motor

Drive Contraction Voltage/ Electric Current

Control Dimension per Joint 2 1

Characteristics Scalable Tension Scalable Torque

Low Friction High Friction

Elastic Inflexible

Damping Stiff

No Tolerances Gears Tolerances

Table 2.1: Comparing muscle and servo driven joints. The different design of the joint

drives causes completely different characteristics regarding capacity of walking behav-

ior.

Thus, using servo motor joints running and jumping movements could just be imi-

tated - to make use of intrinsic dynamics is hardly possible.

Table2.1summarizes the most important differences between muscle and servo

motor driven joints.

Chapter 3

Simulation Environment

Part of this thesis was the development of a simulation environmentSimloid, which

incorporates a physical simulation of the Bioloid biped robot (Simloid- Simulation

of the Bioloid). This chapter introduces into some basics of physical simulation and

presents the developed simulation environment with brief descriptions of its main

modules.

3.1 Motivation

Research on motion pattern generation on real robots has some major barriers:

Hardware easily gets broken, experiments need manual supervision, exact environ-

mental information of experiment states are hard to achieve, batteries need to be

charged and finally the number of robots limits the number of parallel experiments.

A simulation of a robot model could eliminate these disadvantages. But the

benefit of a simulation depends strongly on the congruence of the characteristics

between the real and simulated hardware. This point refers to the modeling of the

real hardware, including adjusting all behavioral aspects of real world, such as e.g.

friction and collision properties between all simulated parts.

Figure3.1draws the ideal course of use of a simulation environment to solve a

real world problem. The course of solving a problem using simulation consists of

mainly three phases: Themodeling phase, thephase of experiments in the simula-

tion and theknowledge transfer to real world.

The phase of modeling is the most sensitive one regarding the validity of the

whole simulation process, since the congruence of real and simulated world behav-

16 CHAPTER 3. SIMULATION ENVIRONMENT

Simulation

Real World

Problem Solution

1.Modeling 2.Machine Learning
 Experiments

3.Knowledge
 Transfer

Figure 3.1: Ideal course of simulation benefit to solve a problem in real world. Due to

continuously comparing and adjusting between real and simulated world behavior, in

practice the phase of modeling often extends up to the end of the experiments phase.

ior depends on it. For a complex system, such as in this case of modeling a highly

detailed robot, an exact match of real and simulated world is hardly possible. It

depends on the system to be simulated, on the problem to be solved and on the

desired yield of knowledge, what degree of detail is required for the modeling to

have an appropriate benefit of the simulation experiments. Anyway, in practice sim-

ulation validating by continuously adjusting and comparing between real and simu-

lated world leads to a steady modeling phase up the end of simulation experiments.

Another approach to model nonlinear systems using coevolutionary algorithms is

introduced by J. C. Bongard et al. [17]. Within this approach, both the structure of

the system and informative tests to extract new information from the system to be

modeled are evolved to converge model and target system behavior.

Once a system is modeled, all experiments can be done in the simulation without

stressing the hardware. The aim of the experiments phase is to achieve the desired

knowledge for solving the problem in real world. This can be either (direct) knowl-

edge that represents the solution of the problem in real world (e.g. concrete val-

ues for controlling the servo motors) ormeta knowledgethat represents knowledge

about how to solve the problem in real world (e.g. setup and values of a machine

learning method that solves the problem). While working with complex systems

which are hard to simulate exactly the latter one will be mostly the more applicable

knowledge (see also chapter5).

The aim of the knowledge transfer is to apply the extracted knowledge from

simulation experiments in real world. Due to differing behavior of real and simu-

3.2. ODE 17

lated world, in most cases the gained knowledge has to be adjusted to real world to

get best results.

3.2 ODE

The biped robot simulation in this approach is based on the discrete physical simula-

tion environmentODE - Open Dynamics Engine[48], originated by Russel Smith.

ODE is an open source, high quality library for simulating articulated rigid body

dynamics. It is fully featured, stable, mature and platform independent with an easy

to use C/C++ API1. It has advanced joint types and integrated collision detection

with friction. ODE is useful for simulating vehicles, objects in virtual reality envi-

ronments and virtual creatures. It is currently used in many computer games, 3D

authoring tools and simulation tools.

3.2.1 Body and Joint Primitives

While working with ODE, all participating physical entities to be simulated are

constructed of atomic rigid body primitives. These primitives include sphere, box,

different cylinder types, infinite plane, ray and triangle mesh objects. Each rigid

body has several constant properties like mass, its center of mass and mass distri-

bution. Other properties change over time. These are its position and orientation in

space and further linear and angular velocity. ODE provides forces and torques as

the two basic concepts used to act on rigid bodies. These two concepts model all

interesting properties one expects from a physical simulation.

Body primitives can be physically connected byjoints. Joints are used to actively

enforce a relationship between two connected bodies. Presently ODE supports the

following joint types: ball and socket, hinge, two-hinge, slider, universal, fixed and

angular motor joints (see figure3.2to get an idea how they work). Joints are nothing

else than constraints, that limit the relative movement of the two connected bodies

to along one or more axes. Additionally joints can act as motors by enforcing the

movement along the non-restricted axes. The angular motor joint allows the relative

angular velocities of two bodies to be controlled. Further ODE provides to restrict

the possible rotation angle of a joint by settingjoint stops. Joint stops are used for

1Application Programming Interface

18 CHAPTER 3. SIMULATION ENVIRONMENT

Figure 3.2: ODE joint types: Above: ball and socket joint, hinge joint. Below: slider

joint, universal joint.

the AX-12 servo motors joints as well to set the valid working range. A set of bodies

which are connected with joints form anarticulated structure, used to simulate e.g.

vehicles or legged creatures.

3.2.2 Collision Detection

When two bodies collide, they influence each other, which can be accurately de-

scribed in terms of forces and torques that are applied on the two colliding bodies.

As mentioned, ODE provides collision detection and handling. This is done via so

calledcollider, which correspond to the geometric shape of the bodies. Their only

purpose is to detect intersections with other colliders. A collider does usually not

model the exact shape of the associated visible object but a computationally less

expensive one. When a collision is detected it must be resolved. The correct forces

that prevent the objects to interpenetrate must be applied to the bodies. This is done

with the help of so calledcontact jointsthat are temporary generated in response

3.2. ODE 19

Figure 3.3: Joints are constraints: A joint constrains the relative movement of the two

connected bodies along one or more axes. Left: Contact joints prevent two bodies

from inter-penetrating. Right: Broken ball and socket joint constraint. ODE performs a

steady error reduction by applying additional correcting forces.

to a detected collision (see figure3.3, left). A contact joint has several parameters

allowing to simulate different collision and friction behavior. Although ODE treats

all bodies as pure rigid, this parameterized collision handling enables to simulate

e.g. damping, elasticity or slipping behavior between two bodies. In particular this

is useful for simulating different floor types. Notice that even the standing of a body

on another (or e.g. on the floor) is a steady collision - the body is only kept in

position by collision handling forces.

From computational point of view, collision detection has to be done at each

simulation step for every single pair of body geometries. ForN objects this is

O(N2). For simulated environments with many objects, collision detection may be-

come computationally expensive. ODE provides some strategies, to optimize the

collision detection usingspaces. A space accumulates a set of body geometries and

can quickly identify pairs of geometries, that are potentially intersecting. Finally,

for saving computation time the collision detection may be disabled for any body

geometry.

3.2.3 Simulation Loop

ODE makes use of the time integrated approach. This means, the physical simu-

lation is done by advancing in discrete time steps. The increment of each single

20 CHAPTER 3. SIMULATION ENVIRONMENT

simulation step can be chosen arbitrary. In general smaller increments (=higher

time resolution) will give a more stable and accurate simulation. On the other hand,

of course the increment (orstep length) influences linearly the simulation speed.2

Within each integration step, the new states of all simulated rigid bodies are calcu-

lated and adjusted. Further, at each step the user can interact with the world by e.g.

adding forces or torques to bodies or getting informations about their states. Thus,

one simulation step consists in mainly three phases:

1. Users interaction with world (setting/getting body states, forces, torques).

2. Collision detection by ODE (marking colliding bodies).

3. Physical simulation step, advancing the simulation time (calculating new

states of bodies).

During the physical simulation step, which advances the simulated time fromt to

t+1, the new states (position, rotation, linear and angular velocity) of all bodies are

calculated, taking into account all given joint constraints. It has to be mentioned, that

constraints are generally not completely fulfilled: In order to have a stable and rea-

sonable simulation behavior while working with the discrete time integrated method

constraints usually have a certain temporal and local valid error range. Different pa-

rameters control the error ranges, the interested reader wants to have a look at [41]

for Joint error and the error reduction parameter (ERP)andSoft constraint and

constraint force mixing (CFM).

3.3 Simloid - Simulation of the Bioloid

To model the given Bioloid robot, all detailed physical properties of it have to be

known. Hence, the robot was disassembled to get all mass and lengths properties of

the single parts. As mentioned above, the robot consists of more than 700 mechani-

cal parts, not including the whole electric part - cables, connectors, whole inner life

of servo motors, individual parts of the acceleration sensor boards are not counted.

The modeling of every single part would not only be time expensive, it would not

make sense at all, since the simulation could not handle reasonable this amount of

parts.

2see also section3.4.5

3.3. SIMLOID - SIMULATION OF THE BIOLOID 21

Figure 3.4: Real and simulated world: Above: Real Bioloid, Simulated Bioloid (Sim-

loid). Below: Real servo motor torque and friction experiment setup, Simulated servo

motor torque and friction experiment setup.

Hence, all statically connected parts were modeled as one ODE rigid body, ex-

cept the acceleration sensors boards. But most of these rigid body parts are com-

posed of more detailed parts - either to get a more detailed surface (geometry) at

complex parts, or to simulate accordingly the inertia tensor at non-uniformly dis-

tributed masses.

Actually the simulated Bioloid consists of 28 rigid bodies, formed by 57 box

geometries and 19 virtual servo motor joints. All lengths, masses and axis positions

correspond to the real robot model. The servo motors are simulated with adequate

torque and friction forces, determined by isolated motor characteristic experiments.

The acceleration sensors are simulated accordingly, getting congruent values to the

real sensor boards. The virtual environment simulates a gravity of 9.81m/s2. The

simulated static friction is adjustable with different models and parameters, allowing

to simulate different floor types. Air drag is actually ignored.

22 CHAPTER 3. SIMULATION ENVIRONMENT

3.3.1 Simulation of servo motor joints

Meanwhile single body related properties like mass, position and dimension of a

part are quite simple to detect and implement, the measuring and modeling of dy-

namic body interacting properties like friction between two parts or the effect of

active actuators are much harder. While simulating an actuators behavior, it has to

be distinguished between itspassive behaviorand itsactive behavior.

Passive behavior of a servo motor means, the behavior of the two connected

bodies results only from external forces (e.g. gravity) or torques that effect the bod-

ies and the inner state of the bodies under the constraint of the servo motor joint

properties.

Active behavior of a servo motor means, among the influence of external forces

and torques the behavior of the two connected bodies is also affected by internal

forces - the applied torques of the servo motor itself.

Both the passive and the active behavior have to be modeled appropriately to get

a reasonable joint simulation behavior. The still open problem consists in finding a

reasonable model that describes all properties of these behaviors. Thenafter appro-

priate experiments have to be set up to determine the correspondent parameters of

the model.

In practice another problem of modeling a real servo motor is the gearbox be-

tween the motor and the driven axis, which causes a complex friction behavior that

is hard to model exactly. It has influences in both the passive and the active behavior

of the joint. For example the friction depends highly on the relation between internal

and external forces. Meanwhile the inner friction of the servo becomes high when

internal and external forces work against each other, it can become nearly negligible

when they work in same direction. Additionally it effects a tolerance between the

two connected bodies, which is caused by bearing and tooth clearances inside the

gearbox.

In terms of ODE, the present model of the AX-12 servo motor joints consists of a

hinge joint and an angular motor. The hinge joint constrains the relative position and

rotation of the two connected bodies, the angular motor enables to apply a torque

between the two connected bodies. Further the hinge joint enables to set joints stops,

that limit the rotational working range, and the angular motor permits to simulate

friction. In the presented simulation a linear friction model is implemented, which is

3.3. SIMLOID - SIMULATION OF THE BIOLOID 23

done by applying a steady torque against the current rotation direction. The torque

is calculated linearly to the angular velocity of the joint.

3.3.2 Comparing Bioloid - Simloid

While working with physical real world simulation, the fidelity and validity of the

simulation outcome is the most important key issue. From point of theoretical view,

we assume equal states both in real and simulated world. A simulation matches

real world, if a given control pattern leads in real as well as in simulated world to

the same state, thus all world physical aspects have to be equal after executing the

control pattern.

However, due the use of simplifying approximations and assumptions within the

simulation, real and simulated world will never match exactly. Since the number of

states and the number of control pattern is infinite, it is hard to demonstrate the

degree of simulations validity.

Nevertheless, some random breath testing could demonstrate a quite good corre-

lation between real and simulated worlds behavior: Control pattern that were devel-

oped and tuned on real hardware were transfered to the simulation. This was done

for a stand up moving pattern and for different walking patterns. The simulation

showed quite same behavior as the real robot.

Regardless, there are still some remarkable differences observed between simu-

lation and real world. They can be categorized into two groups: Firstly, movements

in the simulation are more stable than with real robot. Secondly, some walking pat-

tern that work good with real hardware tend to slip in the simulation causing little

progress of locomotion.

The present differences are caused mainly by the joint tolerances, which are al-

ready discussed in section3.3.1. The effect of the tolerances grows with leverage

that effects a servo motor. Thus, the movement of the ankle joints is strongly influ-

enced by these tolerances. The missing tolerance simulation causes, that movement

patterns which are developed and tuned on real hardware do not work with same re-

sults in simulation. Another point are the material properties of the body primitives

or parts respectively: While ODE simulates a single part as an ideal rigid body, in

real world they are not. The effects are similar to the gearbox tolerances, except that

they apply to the bodies instead of the joints. But in contrast to the adjustable joint

behavior, with ODE there is no way of simulating accordingly deformable bodies.

24 CHAPTER 3. SIMULATION ENVIRONMENT

Simulation Environment

Simulated
Physical World

Bioloid

Monitor

Controller
Interface

Controller
Scene

Description

Figure 3.5: Basic modules of the simulation environment.

3.4 Architecture

The whole simulation environment is written in C++ and consists of 33 classes.

Among some commonly used basic functionality they can be categorized roughly

into thesimulated world, which contains the biped robot model, thescene descrip-

tion moduleand thecontroller module. In addition amonitor moduleprovides three-

dimensional graphical output of the simulated world’s state using the OpenGL in-

terface. The monitor underlying drawstuff library is based on the ODE’s package

delivered one, extended by functions to visualize some alphanumeric data and a

modified camera handling. The monitor module is optional since it is not necessary

for the (numerical) simulation itself. Figure3.5gives a graphical overview of these

modules. They are briefly presented in the following sections.

3.4.1 Simulated World and Main Loop

The whole state of the world is kept in a list ofbody objects. A body object is a

structure, that stores the name, the color, a pointer to the ODE bodies geometry and

a pointer to the ODE bodies physical state. Every single body participating in the

3.4. ARCHITECTURE 25

simulation is kept as a single element in this list. A second list keeps pointer to all

joint objects of the simulation.

When the simulation environment is started, the world is built up by informa-

tions of thescene description module(see section3.4.2) and the lists get filled. After

some additional initialization of the simulation, themain loopis started. Within the

main loop, thecontroller module, the monitor module(if enabled) and the ODE

physics itself get successively in turn access to this body objects list. The main loop

acts as a timer - it controls when the monitor (if enabled) is called to redraw the

scene, when the collision detection is called, when the world’s state is advanced by

the ODE physics calculation and when the controller gets access to the simulation.

Figure3.6shows a flow chart of a simulation run.

3.4.2 Scene Description Module

The scene description module holds all information about how the world is build

up at the beginning of the simulation. This includes the description of all partic-

ipating simulated systems – e.g. the Bioloid robot. It has a lower layer interface,

the primitives moduleand two upper layer interfaces, theBioloid moduleand the

experimental module.

The primitives module encapsulates methods for creating basic elements of the

ODE simulated world. These methods include creating boxes, spheres, servo motor

joints and body geometries. Additionally a macro for creating and positioning ac-

celeration sensor boards is provided. It works as a wrapper around the basic ODE

interface methods to simplify the handling of the objects primitives. It further pro-

vides small statistics summary, to detect e.g. the weight, the number of atomic parts

or the center of mass of a complete simulated system (robot model). The primitives

module interfaces are used by the upper layered Bioloid and experimental module.

The Bioloid module contains a method to create and destroy a Bioloid in the

ODE world. It fills the body objects list using the primitives module. The module

contains all modeling information, hence all weights, lengths, positions, orienta-

tions, joint axes and color information of the simulated Bioloid robot.

The experimental module is a container for some experimental setups in the

simulaton. This was used in particular to test and compare the servo motor joint

behavior. During a (pure) Bioloid simulation run this is not used, but mentioned

here for the sake of completeness.

26 CHAPTER 3. SIMULATION ENVIRONMENT

Build up World

Init Controller

Init ODE Simulation

Collision Detection

Advance World State

Controller Access

Real Time Clock

Monitor update

Real
Time

Simulation?

Update
Visualization?

Simulation Loop

No

No

Yes

Yes

Starting Simulation

Exit Simulation

Initialization

Figure 3.6: Flow chart of a simulation run. Simplified view for a single run.

3.4. ARCHITECTURE 27

Simulation Environment

Simulated
Physical World

Bioloid

Monitor

PID
Controller

TCP
Controller

Keyframe
Controller

Sine Nx
Controller

Neural
Controller

External TCP
Controller

TCP/IP

Keyframe
Structure

Parameter
Vector

Parameter
Vector

Controller
Interface

Figure 3.7: Overview about presently implemented controller modules.

Remark: Conceptually, the modeling data of the simulated world could be kept

in an external structure, e.g. a configuration file. Since the scene description can be

handled as a language [6, 49], the scene description module could be substituted

by a scene description language parser. As an example, the agent-based, physical

simulation framework SPARK3 by Markus Rollmann makes use of such a parser

[31].

3.4.3 Controller Module

To control the simulation a controller interface is provided. An object that uses this

interface is called acontroller module. This architecture allows to easily implement,

test, interchange and compare different controller modules. The controller interface

is fully synchronized with the simulation - at each simulation step the controller

gets complete access to the body objects list4 before the simulation is advanced.

Complete access means, it can read and/or manipulate the state of each simulated

body object. This includes the control of the actuators and the sensor data gathering.

Actuator controlling in the case of servo motor joints is nothing else than a state ma-

nipulating access of the corresponded angular motor joints. Sensor data gathering

3SPARK is a generic simulator for physical multi-agent simulations, recently used for the

RoboCup’s 3D soccer simulation league
4see section3.4.1

28 CHAPTER 3. SIMULATION ENVIRONMENT

means the raw state reading of all sensor related bodies and/or joints. Further, the

controller interface allows to reset the whole simulation, meaning all bodies are re-

located to their initial state, setting the simulation time to zero and where necessary

resetting some additional structures (e.g. PID-Controller, see section3.4.3.1). The

reset functionality is even used for the episodic evolution experiments, which are

presented in chapter4.

The main task of a controller module is to control all actuators of the simulated

robot. Thus, the critical component regarding motion generation is the control ar-

chitecture of this module. To give a review, all implemented controller modules are

briefly presented in the following sections. The details and underlying concepts of

the controller modules are presented in chapter4.

3.4.3.1 PID Controller

A PID controller (Proportional-Integral-Derivative controller) is a common feed-

back loop component in industrial control systems. The controller compares a mea-

sured value from a sensor with a reference setpoint value. The difference (or ”error”

signal) is then used to calculate a new value for a manipulatable input to the process

that brings the sensors’ measured value back to its desired setpoint. Unlike simpler

control algorithms, the PID controller can adjust process outputs based on the his-

tory and rate of change of the error signal, which enables a flexible, more accurate

and stable control.

The output of a PID controller is calculated by three terms: The proportional

term, the integral term and the derivative term. The three terms are defined below:

Pcontrib = Kpe(t) (3.1)

Icontrib = Ki

∫ t

−∞

e(t′)dt′ (3.2)

Dcontrib = Kd
de(t)
dt

(3.3)

⇒ Output = Kpe(t) + Ki

∫ t

−∞

e(t′)dt′ + Kd
de(t)
dt

(3.4)

whereKp, Ki andKd are the proportional gain, integral gain and the derivative

gain,e is the error andt the current time. These constants influence the character-

istic of the PID controllers output (response time, error handling) and are generally

3.4. ARCHITECTURE 29

adjusted once. More detailed informations about theory and work of PID controllers

can be found at [19].

As mentioned in section3.2.1, the control interface of an ODE joint allows only

to apply a torque or - with the use of an angular motor - to set a target relative

angular velocity. The implemented PID controller, which can be plugged between

the controller interface and the controller module, allows to set target angles of the

joints. This in turn is used when generating target trajectories with the trajectory

based approach (see section1.1). The PID controller controls the relative angular

velocity, although it could be applied to the torque setting interface, too. The gain

parameters are adjustable via the simulation configuration.

3.4.3.2 TCP Controller

The TCP5 controller is not a standalone enclosed controller model, but allows to

control the simulation by an external program. This controller was used for a stu-

dents laboratory [33], where isolated tasks, such as balancing problems, where in-

vestigated with appliance of machine learning algorithms. Due to the TCP/IP com-

munication there is no restriction of program languages or operating systems work-

ing with the simulation.

The controller provides a TCP/IP port interface, where the external program is

connected to. The string based communication follows the sense-think-act cycle and

is synchronized with the simulation - at each simulation step the controller receives

all sensory information and has to react to advance the simulation. The provided

sensory information is configurable and adjusted to the sensory information of the

real robot. For machine learning experiments additional feedback data is provided

(e.g. hip position). During the thinking cycle, the controller may send different con-

trol commands to the TCP controller until it sends a ’done’ command confirming

the end of the thinking cycle. This controller reduces the capabilities of actions and

the amount of information adjusted to the real Bioloid robot control capabilities.

Table3.1 gives a review about provided environmental information and the set

of commands.

5transmition control protocol

30 CHAPTER 3. SIMULATION ENVIRONMENT

Bioloid Simloid

Joint Angles 0 . . . 1024 0 . . . 1024

(0◦ . . . 300◦) (0◦ . . . 300◦)

Acceleration Sensors −1.0 . . . + 1.0 −1.0 . . . + 1.0

(1.0 ≈ 11.72m
s2) (1.0 ≈ 11.72m

s2)

Present Moving Speed 0 . . . 1024 0 . . .∞◦s−1

(0 . . . 6840◦s−1)

Hip Position n.a. X([x, y, z])

Table 3.1: Comparing available sensory information between real and simulated robot.

Bioloid Simloid

Goal Position 0 . . . 1024

(0◦ . . . 300◦)

Max Torque 0 . . . 1024

(0 . . . ∼ 16.5kg f cm)6

Torque 0 . . . 1024

(0 . . . ∼ 16.5kg f cm)6

Table 3.2: Available (at present identical) actuation commands of real and simulated

robot.

3.4.3.3 Keyframe Controller

The keyframe controller is a target trajectory generator. The basic concept is to

blend between different robots poses. The poses are kept in keyframe structures.

Transitions describe, how to blend from one pose to another. The concept is pre-

sented in detail in section4.1.

One aim of this controller module was to validate the simulation against real

world behavior. This controller enables to apply real robot motions in the simu-

lation: At present, the motions of the real robots are generated by the keyframe-

transition approach. The motion descriptions are kept in keyframe-transition struc-

tures. These structures can be imported into the simulation via the keyframe con-

troller. As a result, several motions, such as e.g. the stand up motion of the robot,

can be reproduced in the simulation with similar behavior (see section4.1).

6in case of the real Bioloid maximal torque depends on operating voltage

3.4. ARCHITECTURE 31

3.4.3.4 Sine Nx Controller

The sine target trajectory controller makes use of parameterized trigonometric func-

tions. Each joint trajectory is described by such a cyclic function. The Nx label

refers to the function structure, wherex = 0,1,2, . . . declares the parameter space

of the structure. The concept is presented in detail in section4.2.

3.4.3.5 Neural Oscillator Controller

The controlling architecture of the neural oscillator controller consists of a neural

network. Instead of trigonometric functions, the core oscillations in the neural oscil-

lator controller are generated by a recurrent two neuron network, a neural oscillator.

The target trajectories are given by the activities of the correspondent neurons. The

concept is presented in detail in section4.3.

3.4.4 Evolution Module

The applied method to find optimal parameter structures in this thesis is artificial

evolution [36]. Artificial evolution enables to solve/optimize a given problem with-

out having an explicit model of the problem. It is performed by theevolution mod-

ule, which is broadly configurable allowing to accomplish a wide range of evolution

characteristics. It is even configurable while during a running evolution, allowing to

change evolution parameters over time.

One main feature of the implemented module is the pulling architecture: Com-

pared to usual top-down evolution architectures, where the evolution process con-

trols the start of the fitness determing process of an individual in this case individu-

als to be tested are fetched by the fitness determining process itself. This architecture

enables an easy distribution of the artificial evolution among multiple instances of

the fitness determining processes, while the processes can be dynamically attached

and detached to the evolution process.

3.4.4.1 Task Modules

The direction and results of the individual’s behavior during an artificial evolution

depends on the fitness function. Since the fitness function defines (more or less)

the task to be solved, it is encapsulated in an own structure calledtask module.

32 CHAPTER 3. SIMULATION ENVIRONMENT

Simulation Environment

Simulated
Physical World

Bioloid

Monitor

Controller
Interface

Controller
Evolution
Module

Task

Turn
Left

Forward

Figure 3.8: Evolution setup: Main modules of the simulation environment. The evolu-

tion module performs an artificial evolution to solve/optimize a given task. The tasks

are pluggable.

A task module observes an episodical run of an individual and calculates in the

fitness value of the observed individual. This architecture enables a modular task

plugging. It allows to construct easily new fitness functions, and to test, interchange

and compare them. A task defines the fitness value at the end of an episode and

optional abort conditions, which can abort a running episode to save calculation

time.

3.4.5 Simulation speed

As mentioned in section3.2.3, the chosen step length of a single simulation step

conditions the all over simulation speed. The present complexity of the simulation

environment with all its modules and controllers needs about 0.002− 0.001s per

one simulation cycle, or rather allows to calculate 500− 1000 simulation steps per

second as measured by actual hardware (3Ghz CPU). Thus, choosing a step length

of 0.01s leads to a simulation/real time ratio of about 5− 10, a step length of 0.02

leads to a ratio of about 10− 20 and so on. Within this thesis, after some tests step

3.4. ARCHITECTURE 33

lengths between 0.005s and 0.02s were proved to be good compromises between

simulation accuracy and simulation speed.

The presented results in this thesis are the outcome of about 14.000 (realtime)

hours of simulation. This corresponds to a simulation time of about 210.000 (simu-

lated) hours.

34 CHAPTER 3. SIMULATION ENVIRONMENT

Chapter 4

Motion Generation

This chapter presents three different approaches, how to control the joints of the

biped robot to achieve a certain motion. Among some additional tasks, the main

focus was set on walking pattern. All approaches are designed to generate target

trajectories. The target trajectories are handled by PID controllers1, which control

the joints. All presented approaches were implemented in controller modules which

were introduced in section3.4.3.

4.1 Keyframe-Transition Approach

The keyframe-transition approach consists of a directed graph, with keyframes as

nodes and transitions as edges. A keyframe is a snapshot of a robot’s pose. Thus, a

keyframe is a vector of all joint angles of the robot corresponding to this pose. A

transition connects one keyframe with another. Along the transition all joint angles

are linearly interpolated over time. The transition describes, how the interpolation

is done. Playing a keyframe-transition structure means, starting from a keyframe all

joint angles corresponding to the keyframes along the transition path describe the

target angles of the robot’s servo motors.

The keyframe-transition model is continuously enhanced by the Humanoid

Team Humboldt [14]. Meanwhile e.g. informations about torques to be used and

selectors to switch between different outgoing transitions are added to the transition

structures. Furthermore environmental feedback, such as measured joint angles are

incorporated in the model.

1see section3.4.3.1

36 CHAPTER 4. MOTION GENERATION

Figure 4.1: A first weak validation of the simulation: The stand up motion is keyframe-

transition based and was developed on the real Bioloid. The (raw) transfer of the identical

keyframe structure to simulation shows similar behavior.

4.2. CYCLIC FUNCTION APPROACH 37

This approach is applied at the present motion control framework of the real

Bioloid robot. The advantage of this approach is the easy and fast way of motion

pattern generation - for example a working walking pattern could already be gener-

ated by four keyframes. The poses may be knead by hand and together with software

tools2 the motions can be tuned or expanded. A given keyframe-transition structure

is easy to analyze and to modify. The graph model allows to switch between differ-

ent motion patterns (e.g. walk and stand).

On the other hand, the linearly interpolated target trajectories do not model nat-

ural motions. Smooth curves can only generated by a higher resolution of keyframe

points on the trajectory graph, which are harder to handle in turn. A second point is

the question of sensor coupling. At present, sensor feedback is only used for topple

detecting, to initiate a stand up motion after a downfall. But using of sensor feed-

back for interferencing the motion generation in order to stabilize the motion or to

detect and handle obstacles is hard to implement and may need a physical model

within this approach.

4.2 Cyclic Function Approach

In general biped walking is a more or less cyclic motion with a period length of

one full step. Each joint repeats its motion after one period. Based on this fact, this

approach assumes a cyclic ideal angle function for each joint. One period of each

function corresponds to one full step, hence all functions have the same frequency.

4.2.1 Partial Fourier Series

The most elementary cyclic function we know from nature is - among the trivial

constant function - the sinusoid. Its shape describes for example the motion of a

tuning fork or the harmonic oscillation of a physical pendulum.

Thus, with given frequency we assume for each jointj the following parameter-

ized sine function:

α j(tp) = aj0 + aj1 ∗ sin(tp + bj1) (4.1)

wheretp is the periodic time andα j(tp) is the target angle of jointj at timetp. The

parametersajn,bjn describe the trajectory shape:aj0 determines the offset,aj1 the

2e.g.motion editorby Christian Thiele

38 CHAPTER 4. MOTION GENERATION

-1

-0.5

 0

 0.5

 1

2π1.5ππ0.5π

0.1 + 0.8*sin(x-0.3)

-1

-0.5

 0

 0.5

 1

2π1.5ππ0.5π

0.2 + 0.8*sin(x-0.3) + 0.4*sin(2*x+0.5)

-1

-0.5

 0

 0.5

 1

2π1.5ππ0.5π

-0.1 + 0.5*sin(x-0.1) - 0.3*sin(2*x+0.6) + 0.4*sin(3*x+0.6)

Figure 4.2: Example wave shapes for parameter spaceN = 1, N = 2 andN = 3. Graphs

show one period. With growingN more complex shapes are possible.

amplitude andbjn the phase shift of the joint oscillation. Note thattp is calculated

by:

tp = treal· f ·2π (4.2)

wheretreal is the realtime andf is the full step frequency.

Although this a quite simple and restrictive motion model with few parameters,

a robust forward walking could be generated with walking speeds up to 0.07m/s.

However, due to the restriction of one single amplitude per fullstep, human-like

walking is not reachable: Since some human joints (e.g. knee and ankle) work with

double step frequency during walking (compare figure4.17), they need a trajectory

shape of at least two possible amplitudes. This is done by adding a double frequency

term to equation4.1:

α j(tp) = aj0 + aj1 ∗ sin(tp + bj1) + aj2 ∗ sin(2tp + bj2) (4.3)

Analog toaj1,bj1 the additional parametersaj2,bj2 describe amplitude and phase

shift of the double frequency term.

This principle can be carried on by adding a triple frequency term and so on. In

general this is a called apartial Fourier serieswhich is given by:

f (t) = A0 + A1sin(ωt + φ1) + A2sin(2ωt + φ2) + ... + ANsin(Nωt + φN)

= A0 +

N∑
n=1

Ansin(nωt + φn) (4.4)

where f (t) = α j(tp), An = ajn, ω = f ∗ 2π andφN = bjn.

4.2. CYCLIC FUNCTION APPROACH 39

Figure4.2 shows example wave shapes for parameter spaces ofN = 1, N = 2

andN = 3. It is shown, that forN → ∞ any cyclic wave shape can be generated

[32]. In this thesis wave shapes generated fromN = 1, N = 2 andN = 3 were

examined and compared.

4.2.2 Symmetry Assumption

The presented partial Fourier series has with given frequency 1+ 2N parameters.

Without any constraints for 19 joints this would be 19+ 38N parameters. The di-

mension of the parameter space has a critical influence to the fitness progress, since

more dimensions enable a larger set of possible individuals. Thus reducing the pa-

rameter space reasonable may sensibly facilitate the exploring of the search space

for parameter solutions. The main consideration is to cut off the parameter space

without reducing the space of optimal individuals.

The reduction in the case of walking is based on the assumption, that walking is

a symmetric motion: A motion of a left sided joint is the same as the correspondent

joint on the right side with a phase shift of half a period. Thus, for two symmetric

joints the amplitude and phase shift of the individual Fourier series’ terms have

only to be determined once for a pair of symmetric joints. Assuming same (sagittal

mirrored) orientation of two symmetric jointsj andk the correspondent parameters

would be:

akn = ajn (4.5)

bkn = bjn + π (4.6)

The Bioloid’s bodywork has 18 symmetric joints (6 per leg, 3 per arm) plus

the ”waist” joint in the middle of the body. Hence assuming symmetric motions

the search space can be reduced to 9+ 1 trajectory functions or rather 10+ 20N

parameters using the partial Fourier series approach. Table4.1 gives a review for

the parameter dimension forN = 1, N = 2 andN = 3.

4.2.3 Evolution Setup and Results

This section describes the setup and results of artificial evolutions using the cyclic

function approach. Among some additional tasks, the primary object was to cover a

long as possible distance within a given time. For determining the fitness value of an

40 CHAPTER 4. MOTION GENERATION

Parameter Space Parameter Space Dimension

Without any Reduction Symmetry Assumption

N = 1 57 30

N = 2 95 50

N = 3 133 70

Table 4.1: Overview about parameter dimensions for 19 joint trajectories using partial

Fourier series as cyclic functions. Comparison between raw and reduced parameter

space with symmetry assumption.

individual, an episode has to be processed. Each episode starts with the relocation

of the robot to its initial position, processing theinit phase(explained below) in

order to pass the episode. Figure4.3 shows a general evolution process flow and

displays the interrelationship between the simulation, the evolution and the task

module. Among the following presented setup, further parameters can be found in

appendixA.

Genotype description.A single individual is given by its specific genotype. The

genotype in this approach is a vector of double numbers, ranging within [−π . . .+π].

The number and meaning of the genes is determined by the applied parameter

space: The vector consists of 10∗ (1 + 2N) Fourier series parameter plus one ad-

ditional parameter denoting the frequency. The range of frequency was limited to

[0.3 . . . 10Hz].

Episode duration.There were different tests about the episode duration - from

10s up to 90s. Some issues have to be considered when choosing the time: A short

episodic time may accelerate the evolution since each episode is finished in a shorter

time. On the other side, individuals that tend to be unstable may pass a shorter

episode without falling. As a result fast but unstable individuals may be favored

by this setup. A long episodic time slows down the evolution. Stable individuals

survive over unstable ones. As a good applicable value, an episode duration of 20−

25s has been proved. In general, short episode times may be used for a fast fitness

progress in the beginning, while increasing the time may fine-tune and stabilize the

individuals.

Abort conditions. To accelerate the evolution progress, episodes may be

aborted. Certain abort conditions which are defined by the task module (see section

3.4.4.1) are checked at each simulation step during the episode. If any gets fulfilled,

4.2. CYCLIC FUNCTION APPROACH 41

Init Simulation

Init Evolution

Reset Simulation

Get Individual

Init Phase

Init Episode

Starting Evolution

Exit Evolution

Initialization

Abort
Condition
Fulfilled?

Controller Access

Advance Simulation

Reached
Max Episode

Duration?

No

Send Fitness

Calculate Fitness

Yes

Yes

No

Run Episode

Finish Episode

Evolution
Module

Individual

Fitness

Task
Module

Task
Module

Evolution
Module

Figure 4.3: Flow chart of an evolution run and illustration of simulation – evolution/task

module correlation. The dotted arrows describe the communication between the simu-

lation and the evolution module. Further the two relevant task dependent operations are

connected with the task module.

42 CHAPTER 4. MOTION GENERATION

the episode is aborted, advancing to the next episode. For the forward walking task

an episode was aborted when the robot fell down, which was detected by the z-

coordinate of the hip, or when robot went off the preferred walking line, which was

detected by the x/y-coordinates of the hip.

Init phase. Due to the constant term of the partial Fourier seriesaj0 (see section

4.2), every joint has a constant offset of its trajectory oscillation. This offset leads to

a starting pose different to the all-joints-zero-positioned pose. The zero positioned

pose is initialized at the beginning of each episode. Without any smooth transition to

an individuals starting pose it could fall in the beginning of the episode due of abrupt

movements to reach the starting pose. The init phase is a time span in the beginning

of each episode, in which the robots pose is interpolated smoothly from the ’zero’

position to the starting pose. It was adjusted to 1s in all processed evolutions.

Step length.The step length denotes the time increment during one simulation

step (see also section3.2.3). It can be chosen arbitrary, but a larger value will cause

growing simulation inaccuracy up to chaotic, nonrealistic behavior. Smaller values

increase simulation’s accuracy, but slow down the simulation speed linearly. Differ-

ent tests showed, that in general a step length ofs = 0.02s is a good compromise

between simulation speed and accuracy. For fine tuning of individuals, step length

was set also to 0.01s.

Fitness function.The fitness function is defined by the task module (see section

3.4.4.1). Within this thesis, the (simplest) value of covered distance in stated walk-

ing direction has been proved as best fitness function for evolving forward walking

motion patterns. As ”position” of the robot, the center of both feet centers was used.

An episode is aborted, if the robot falls or gets off the stated walking line within a

range of 0.2m, where as reference point the hip’s coordinates were used. A falling

is detected, if the robot’s hip height gets 0.10m below its initial height at episode’s

start.

4.2.3.1 Bootstrap Evolutions

Figure4.5 shows the graphs of three evolution runs using the cyclic functions ap-

proach with the parameter space ofN = 1, N = 2 andN = 3. Several evolution runs

with different parameters were processed to find a reasonable parameter set which

is listed below. The graphs represent runs with best fitness results. Each run started

with a first generation consisting of 50 individuals, each individual with a Gaussian

4.2. CYCLIC FUNCTION APPROACH 43

Old Generation Selection Padding by
Crossover/Copies

Mutation

M

M

M

M

M

M

New Generation

Individual
Mutation Probability

Gene Mutation Probability /
Gene Mutation Type

Crossover / Copy

(sorted by fitness)

Population Size Selection Size

Figure 4.4: Generation of the new generation: Process of selection, crossover/copy and

mutation, and the interrelationship of some evolution parameters.

distributed genotype with a mean ofm = 0.0 and a standard deviation ofs = 0.01.

Table4.2gives a review about further evolution parameters:

Parameter Value

Episode Duration 25s

Population Size 50

Selection Size 15

Padding Type Crossover

Mutation Probability for an Individual 0.5

Mutation Probability for a Gene 0.2

Gaussian Variance when Mutating a Gene 0.05

Table 4.2: Summary of most important evolution parameters for the bootstrap evolu-

tions.

As can be seen in in figure4.5, within the first 20.000 generations, best re-

sults were found byN = 2 parameter space. It reached a walking speed up to

v = 0.13m/s, meanwhile forN = 1 speeds up to onlyv = 0.08m/s and forN = 3

speeds up to onlyv = 0.06m/s were reached. This effect can be explained by the

two main factors influencing the evolution results: The space of possible motion

pattern and the dimension of the search space of parameter vectors. Both depend

directly on each other, since a larger motionspace causes a larger search space of

parameters. But meanwhile a higher dimension of motion space enables potentially

44 CHAPTER 4. MOTION GENERATION

 0

 1

 2

 3

 4

 0 5000 10000 15000 20000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (N=1)

max
ave
min

 0

 1

 2

 3

 4

 0 5000 10000 15000 20000 25000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (N=2)

max
ave
min

 0

 1

 2

 3

 4

 0 5000 10000 15000 20000 25000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (N=3)

max
ave
min

Figure 4.5: Fitness developing of evolution runs for parameter spaceN = 1 (above),

N = 2 (center) andN = 3 (below). Meanwhile the fitness graphs forN = 1 andN = 2

remain static after the first 12.000 generations, the graph forN = 3 shows a small but

steady gradient.

4.2. CYCLIC FUNCTION APPROACH 45

faster and more stable individuals, the higher dimension of search space slows down

drastically the progress of fitness evolution.

Meanwhile the graph forN = 3 shows a small but steady gradient of fitness, the

fitness forN = 1 andN = 2 remains static after the first 12.000 generations. Due to

limited computation power, the evolution run forN = 3 was aborted without having

a stagnated maximum fitness value.

4.2.3.2 Incremental Evolutions

The presented evolution runs in section4.2.3.1start with zero-initialized individuals

- all genes are gauss distributed with a mean ofm = 0.0 and a small deviation

(detailed parameter see also appendixA). But it is also possible to initialize the first

generation individuals at any region in the parameter space. This can accelerate the

evolution progress, since the starting point can already have a better fitness value

than the zero initialized individuals. On the other hand, this can be used for tuning

an already good individual by expanding its motion pattern space.

Since each parameter space ofN > 0 is a real superset of all parameter spaces

of N′,0 ≤ N′ < N, each parameter set of a lower dimensional parameter space can

be transferred to a parameter space of higher dimension. All additional parameters

are zero initialized. This approach is used for the incremental evolution. An example

demonstrates, that already evolved solutions can serve as a starting point for a higher

dimensional parameter space evolution: Figure4.6 shows the results of aN = 2

evolution using aN = 1 evolved individual and the results on aN = 3 evolution

using aN = 2 evolved individual.

46 CHAPTER 4. MOTION GENERATION

 0

 1

 2

 3

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (N=1)

max
ave
min

 0

 2

 4

 6

 8

 10

 0 10000 20000 30000 40000 50000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (N2)

max
ave
min

 6.5

 7

 7.5

 8

 8.5

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (N3)

max

Figure 4.6: Fitness developing of evolution runs applying the ”incremental” evolution:

Above: First evolution run, usingN = 1 parameter space. Center: Evolution run in

parameter spaceN = 2. First generation was initialized by final best individual of

N = 1 evolution run. The covered distance could be enhanced from 1.74m to 7.43m.

Below: Evolution run in parameter spaceN = 3. First generation was initialized by

final best individual ofN = 2 evolution run. The covered distance could be enhanced

from 7.43m to 8.07m.

4.3. NEURAL OSCILLATOR APPROACH 47

4.3 Neural Oscillator Approach

The cyclic function approach (see section4.2) uses partial Fourier series for gen-

erating the wave shapes of the joint trajectories. This enables only harmonic wave

shapes, and even for lower parameter spaces this may be a sensitive restriction. To

enable more complex wave shapes, the parameter space grows quickly which makes

it in turn harder to find optimal parameter vectors. Another disadvantage of the func-

tion based approach is the need for a (physical) model to couple available sensor

information with the motion generation. The neural oscillator approach makes use

of neural networks to generate the joint’s target trajectories. This enables other than

sinusoidal shapes and due to the synaptic architecture potentially an easier coupling

of sensor information.

4.3.1 Two Neuron Networks

The neural oscillator approach generates the core oscillation by using discrete-time

dynamics of two neuron networks. Aspects of discrete-time dynamics with recurrent

connectivity have been studied extensively, e.g. [10, 38]. The basic idea of this

approach is formulated by Pasemann, Hild and Zahedi in [11], which is also a good

address for the mathematical background of this approach. The networks consists

of two standard additive neurons with recurrent connectivity. In general it is given

by a 6-parameter tuplep = (θ1, ω12, ω11, θ2, ω22, ω21) ∈ �6, whereθi denotes the

bias term of neuroni, andwi j the synaptic weight from neuronj to neuroni. The

output of a neuron is in general given by a sigmoidal transfer functionσ, which

here is chosen to be the hyperbolic tangentσ = tanh.

Furthermore, for convenience in this approach it is setθ1 = θ2 = 0. Figure4.7

displays such a network. The resulting two neurons dynamics is then given by the

equations:

a1(t + 1) := ω11σ(a1(t)) + ω12σ(a2(t)) (4.7)

a2(t + 1) := ω21σ(a1(t)) + ω22σ(a2(t)) (4.8)

Thus, the network is given by the weight matrix

Ω =

ω11 ω12

ω21 ω22

 (4.9)

48 CHAPTER 4. MOTION GENERATION

Figure 4.7: A two neuron network with recurrent connectivity and no bias terms.

It is shown, that certain configurations of the weight matrixΩ cause periodic

or quasi-periodic attractors in the discrete time dynamics of the network [11, 55].

These types of networks are able to generate different types of oscillations which

can be used in turn for generating target trajectories.

4.3.2 SO(2)-Networks

A special type of weight matricesΩ satisfying determinantdetΩ = 1 are the ele-

ments for thespecial orthogonal group SO(2). They are associated with rotations in

the plane and a standard representation of these elements is given in terms ofsin(ϕ)

andcos(ϕ) of the rotation angleϕ. Thus, convenient weight matrices are of the form

Ω =

ω11 ω12

ω21 ω22

 =  cos(ϕ) sin(ϕ)

−sin(ϕ) cos(ϕ)

 (4.10)

The dynamics of such a two neuron network depends on one single parameter

−π ≤ ϕ ≤ π and is given by

a1(t + 1) := cos(ϕ) tanh(a1(t)) + sin(ϕ) tanh(a2(t)) (4.11)

a2(t + 1) := −sin(ϕ) tanh(a1(t)) + cos(ϕ) tanh(a2(t)) (4.12)

Networks with weight matrices of this type already have oscillating dynamics.

However, since the gradient of the hyperbolic tangent transfer function is always

less than one (except forx = 0), the amplitude of the oscillation levels off over

time. To enable quasi-periodic attractors a second parameterα > 1 is introduced

which causes a scalable "push" of activation at each time step. The weight matrix

of the network is now given by

Ω =

ω11 ω12

ω21 ω22

 = α ·  cos(ϕ) sin(ϕ)

−sin(ϕ) cos(ϕ)

 (4.13)

4.3. NEURAL OSCILLATOR APPROACH 49

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.4 0 0.4 0.8

a 2

a1

Attractor in (a1,a2)-Space

output signal

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 20 40 60 80 100

N
eu

ra
l O

ut
pu

t

Time [steps]

Output Signals of Neurons

a1
a2

Figure 4.8: Example of a SO(2)-network output: Attractor in (a1,a2)-space (left), and

output signals of neuron 1 and 2 (right) forα = 1.1, ϕ = 0.5. Graphs show the initial

phase up to reaching the quasi-attractor range within the first 100 time steps. The initial

activation was set toa1 = 0.01,a2 = 0.0.

whereα in general is chosen to beα = 1+εwith 0 < ε � 1. Networks with a weight

matrix of the type4.13 are calledSO(2)-networks. The frequency of oscillation

changes with varyingα andϕ. Figure4.8 shows an example of the dynamics of a

SO(2)-network with a well-visible quasi-periodic-attractor.

4.3.3 Controller Topology

Section4.3.2demonstrates, that certain weight matrices of a two neuron network

may generate quasi-periodic oscillations. These are used now for generating the

joint’s target trajectories. However, there is no reason to limit the weight matrices

to the form of SO(2)-networks, since other weight matrices generate ”stable” oscil-

lations as well and may vary the attractor’s shape. Hence, all four weights are going

to be evolved independently in this approach. Each target goal position of a single

joint is represented by the output of one standard additive neuron, which derivates

its activation by two synapses coming from the two neurons oscillator and a bias

term which represents the offset of the joint’s oscillation. Thus, each joint trajectory

is described by three parameters,ω j1, ω j2 andθ j, whereω ji denotes the synaptic

weight coming from neuroni = 1,2 andθ j the bias of jointj. Figure4.9shows the

neural topology of the controllers network.

50 CHAPTER 4. MOTION GENERATION

Figure 4.9: Topology of the neural net controller. Each joint’s trajectory is given by a

dedicated neuron, which derives its activation by the two oscillating neuronsN1, N2

and a bias termθ j .

4.3.4 Symmetry Assumption

Analog to the symmetry assumption in the cyclic function approach (see section

4.2.2), in the neural net approach some reasonable restrictions due to symmetric

behavior may reduce the parameter search space significantly.

The phase shift ofπ between right and left sided joints is easily done by mir-

roring all target trajectories of the joints belonging to one body side. Consider two

corresponded jointsj (left side) andk (right side). The offsetθ j andθk works for

both in same direction, thus

θk = θ j (4.14)

The trajectory’s amplitude is mirrored along the x-axis, which corresponds to a

180◦ rotation about the origin in the (a1,a2)-space (compare figure4.8, left). Hence

it is set

ωki = −ω ji , i = 1,2 (4.15)

In this way, the parameter space is nearly halfed from 61 to 34 parameters.

4.3. NEURAL OSCILLATOR APPROACH 51

4.3.5 Evolution Setup and Results

Similar to the evolution setup of the cyclic function approach, the primary object

was to cover a long as possible distance within a given time. The fitness values

of the individuals were determined again by processing episodes. To compare the

results with those of the cyclic function approach, same basic setup and episodic

process of the evolution (e.g. with initial phase) was applied - see section4.2.3. The

different or rather additional setups are described below.

Genotype description.A single individual is given by a double number param-

eter vector, denoting the synaptic weights and bias terms of the controllers network.

A single weight ranges within [−4.0 . . . + 4.0], since this covers the most signifi-

cant operating range of the hyperbolic tangens transfer function. The first genera-

tion consisted of individuals with (weak Gaussian noised) zero initialized parame-

ter vector except the first four parameters denoting the neural oscillator’s weights:

For reasons of accelerating the evolution progress, the two neuron net was initial-

ized so, that it already had oscillating dynamics. The chosen parameter were set to:

ω11 = 1.1,ω12 = 0.7,ω21 = −0.7,ω22 = 1.1, which corresponds to a SO(2)-network

with α ≈ 1.3 andϕ ≈ 32◦.

Step length.Unlike to the cyclic function approach, in general best evolution

results were found at step lengths = 0.01, fine tuned individuals require also step

lengths up tos = 0.005s. This may be caused by the non-harmonic target trajecto-

ries, which require a more precisely sample resolution.

Net update frequency.In addition to the simulated world’s time, in the neural

oscillator approach the neural net has also to be updated periodically. This could

be either done by denoting the ratio between simulation’s updates and net updates.

Or the net update frequency is given absolute in world’s simulation time, which

has the advantage that changing of one parameter does not interact the other - e.g.

the simulation resolution is independent from net update frequency. In the latter

case, it is advisable to chose simulation’s step length as a multiple of the net update

time to ensure always same simulation time period between two net updates. In

this approach, the net update frequency is set in simulation time. Best behavior and

evolution results were found forfnetupdate = 20Hz (or rather one net update per

0.05s).

The further most important evolution parameters are listed in table4.3. Figure

4.10shows the graphs of the evolutions with best results.

52 CHAPTER 4. MOTION GENERATION

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1000 2000 3000 4000 5000 6000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (Neural Controller)

max
ave
min

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (Neural Controller, Symmetric)

max
ave
min

 10

 10.2

 10.4

 10.6

 10.8

 11

 0 2000 4000 6000 8000 10000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (Neural Controller, Symmetric)

max

Figure 4.10: Fitness developing of evolution runs using the neural oscillator approach.

Above: Evolution without symmetry assumption. Center: Evolution with symmetry as-

sumption. Below: ”Fine tuning” of best individual with symmetry assumption.

4.3. NEURAL OSCILLATOR APPROACH 53

Figure 4.11: Evolution of Walking Pattern: Example of evolved walking pattern with

neural oscillator approach. Pictures show start of walking and first steps. The displayed

motion reaches a walking speed of about 0.45m/s.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.4 0 0.4 0.8

a 2

a1

Attractor in (a1,a2)-Space

output

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50 60 70 80 90 100

N
eu

ra
l O

ut
pu

t

Time [steps]

Output Signals of Neurons

a1
a2

Figure 4.12: Dynamics of the displayed individual in figure4.11. Attractor in (a1,a2)-

space (left), and output signals of neuron 1 and 2 (right). Evolved synaptic weights

of the neural oscillator:ω11 = 1.166865,ω12 = 0.610873,ω21 = −0.467230,

ω22 = 0.834088. Graphs show the initial phase up to reaching the quasi-attractor range

within the first 100 time steps. The initial activation is set toa1 = 0.01,a2 = 0.0.

54 CHAPTER 4. MOTION GENERATION

Parameter Value

Episode Duration 25s

Population Size 50

Selection Size 15

Padding Type Copy

Mutation Probability for an Individual3 0.9

Mutation Probability for a Gene 0.1

Gaussian Variance when Mutating a Gene 0.01

Table 4.3: Summary of most important evolution parameters for the neural oscillator

evolutions.3Note that best evolution results were found without(!) crossover, thus mu-

tation rate was increased to 0.9

4.3.6 Sensor Coupling

Without any feedback, a robot pilots ”blind” through its environment. The robot

could not react to obstacles, surface changings or gradients. Thus, stable and adap-

tive biped motions are not possible without any environmental feedback. The human

as archetype of biped motion uses a lot of sensor informations to control its motion.

Due to limited time and scope of this thesis, sensor coupling experiments were

only processed briefly within some problems of the students laboratory [33]. Further

studies, especially for stabilizing biped motions were not accomplished. Neverthe-

less, some ideas, which belong to the background of exploring the neural oscillator

approach, shall be outlined here.

While dealing with sensor feedback processing to solve a certain problem (e.g.

stabilizing walking), two major questions get posed: Firstly, what kind of sensor in-

formation may be useful regarding the problem, and secondly, how should a certain

sensor information be integrated into the motion generation to solve the problem?

Both questions refer to biological, physical and mechatronic topics, which form an

own field of research.

The synaptic architecture of the neural oscillator approach allows to connect

any sensor information to any neurons of the controller’s neural net without having

a specific sensor coupling model. The evolution may help finding optimal synaptic

weights, to solve or optimize the given problem. The following two sections give

4.3. NEURAL OSCILLATOR APPROACH 55

brief examples, how sensor information may be incorporated into the neural oscil-

lator controller.

4.3.6.1 Harmonic Synchronization

Figure4.13 shows a simple topology of coupling an external harmonic clock os-

cillator to the presented two neuron network. Within a certain range of frequency

the neural oscillator is able to synchronize with the external oscillator. Figure4.14

demonstrates an example: The external oscillator generates a sinusoidal shape with

frequency of 5 periods per 100 time steps. The synaptic weight of coupling the os-

cillator was chosen toω1s = 0.2. Without any coupling the neural net oscillates

with about 8 periods per 100 time steps. When coupling, the neural oscillator syn-

chronizes smoothly within 2 periods of the external oscillator to exact the same

frequency.

Harmonic oscillating sensory sources are on hand when e.g. filtering body’s

acceleration sensors, that measure accelerations in the horizontalx/y-plane. Thus, it

is conceivable using this type of sensor coupling to synchronize the neural oscillator

with the robot’s pendulum frequency.

4.3.6.2 Impulse Synchronization

Figure4.15shows a simple topology of coupling an external impulse generator to

the two neuron network. With a certain setup of the weight matrix of the neural

network, it is capable to synchronize with impulses given by the generator. Figure

4.16 demonstrates an example: The external generator induces line peaks of size

1.0. The frequency is chosen irregularly to demonstrate the stable synchronization

to different frequencies. The weight matrix corresponds to a SO(2)-network with

α = 0.9. Thus, the neural oscillator’s activation amplitude is damped over time

without external impulses.

Discrete impulses are given e.g. by a discrete touch sensor placed on the foot,

which generates an impulse when the foot touches down on the floor. A sensor

coupling in that way could synchronize the neural oscillator with the foot’s touching

which may help stabilizing the motion on slightly rough floors.

56 CHAPTER 4. MOTION GENERATION

Figure 4.13: A two neuron network with a coupled external harmonic oscillator.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.4 0 0.4 0.8

a 2

a1

Attractor in (a1,a2)-Space

no coupling
sine coupling

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 60 80 100 120 140 160

N
eu

ra
l O

ut
pu

t

Time [steps]

Output Signals of Neurons

a1
a2

sine

Figure 4.14: Example of a harmonic synchronization: Left: Attractor in (a1,a2)-space

of the two neuron oscillator without and with coupling. Right: Output of the two neuron

oscillator without and with coupling. The SO(2) oscillator parameters are:α = 1.1,

ϕ = 0.5, the chosen synaptic coupling of the external oscillator isω1s = 0.2. The

external oscillator generates a sinusoidal shape with frequency of 5 periods per 100

time steps. After coupling the two neuron oscillator synchronizes from 8 periods per

100 time steps to the external oscillator’s frequency.

4.3. NEURAL OSCILLATOR APPROACH 57

Figure 4.15: A two neuron network with a coupled external impulse generator.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
eu

ra
l O

ut
pu

t

Time [steps]

Output Signals of Neurons

a1
a2

impulse

Figure 4.16: Example of an impulse synchronization: Output of the two neuron os-

cillator. The vertical lines indicate the impulses. The SO(2) oscillator parameters are:

α = 0.9, ϕ = 0.5, the chosen synaptic coupling of the external oscillator is set to

ω1s = 1.0. The neural oscillator synchronizes with the irregularly clocked impulses of

amplitude 1.0.

58 CHAPTER 4. MOTION GENERATION

4.4 Comparing Joint Trajectories

Figure 4.17 displays joint trajectories of walking motions of an evolved

N2-individual, an evolved neural oscillator individual and a human. The graphs

display the trajectories of the right ankle, right knee and right hip joint in sagittal

direction, which give a first well characterization of each motion.

The graphs of the Simloid controller driven motions show the target and the real

joint trajectories. The motion data of the human were measured on an instrumented

treadmill at the Locomotion Laboratory of University of Jena3. Regarding the body

height relation between human (shoulder height≈ 150cm) and Bioloid (shoulder

height≈ 34cm), the real walking speed of the human (vwalk ≈ 1.50m/s) corresponds

to a walking speed ofvwalk ≈ 0.34m/s. All graph intervals were bring into line.

The fullstep frequencies range from 0.67Hz (N2) over 1.14Hz (Human) up to

1.33Hz (Neural Oscillator). The low frequency of the N2 individual is compensated

by the step width. This can be seen in the huge amplitude of the hip joint. Table4.4

gives a brief analysis about offset and amplitude of the drawn trajectories.

Although not further funded, the table draws the percental relation between hip,

knee and ankle amplitude. This value may characterize the relative use of the single

joints. It is noticeable, that a human motion makes most of use of the knee joint

(relative use of 46%, 65◦ working range at human in contrast to 30◦ working range

at neural oscillator). The working range of the human knee joint with 65◦ is nearly

twice the working range of the human hip joint. In contrast, the evolved individuals

make more of use of the hip and the ankle joint (more than 60◦ hip joint’s working

range of neural oscillator in contrast to about 25◦ working range at human), mean-

while the knee joint’s trajectory is characterized by lower amplitudes. The most

extreme case is given in the N2 individual, which moves with nearly a stiff knees

(relative amplitude 7%). This leads to somehow ”stilt” walking individuals. These

types of individuals make extensively use of the inverted pendulum frequency of

the robot’s body, which is a typical motion phenotype of this simulation’s evolved

individuals. Apparently for the applied evolution in the ”ideal” world with constant

influences and an obstacle free floor it is easier to cover longest distances by mov-

ing in this way. The disadvantage of this moving type is, that small obstacles on the

3Thanks to Susanne Lipfert and the Locomotion Laboratory (University Jena, Germany) [57]

4.4. COMPARING JOINT TRAJECTORIES 59

C
yclic

F
unction

(N
=

2),vw
a

lk
≈

0
.30m
/s

N
euralO

scillator,vw
a

lk
≈

0
.41m
/s

H
um

an,vw
a

lk
≈

1
.5m
/s

Right hip joint (sagittal amplitude)

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Angle [o]

T
im

e [s]

 T
arget trajectory by cyclic function

R
eal trajectory by joint sensors

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Angle [o]

T
im

e [s]

 T
arget trajectory by neural net

R
eal trajectory by joint sensors

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Angle [o]

T
im

e [s]

T
rajectory

Right knee joint (sagittal amplitude)

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Angle [o]

T
im

e [s]

 T
arget trajectory by cyclic function

R
eal trajectory by joint sensors

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
Angle [o]

T
im

e [s]

 T
arget trajectory by neural net

R
eal trajectory by joint sensors

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Angle [o]

T
im

e [s]

T
rajectory

Right ankle joint (sagittal amplitude)

 40

 60

 80

 100

 120

 140

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Angle [o]

T
im

e [s]

 T
arget trajectory by cyclic function

R
eal trajectory by joint sensors

 40

 60

 80

 100

 120

 140

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Angle [o]

T
im

e [s]

 T
arget trajectory by neural net

R
eal trajectory by joint sensors

 40

 60

 80

 100

 120

 140

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Angle [o]

T
im

e [s]

T
rajectory

F
igure

4.17:C
om

parison
ofjointtrajectories

for
hip

(upper
row

),knee
(center

row
)

and
ankle

(low
er

row
)

jointofthe
rightleg.G

raphs
are

taken
from

a
N

2
individual(leftcolum

n),neuraloscillator
individual(center

colum
n)

and
hum

an
(rightcolum

n).

60 CHAPTER 4. MOTION GENERATION

Trajectory N2 Neural Controller Human

Hip Offset 135◦ 155.5◦ 132.5◦

Amplitude 70◦ (50%) 65◦ (47%) 35◦ (25%)

Knee Offset 160◦ 166.5◦ 137.5◦

Amplitude 10◦ (7%) 33◦ (24%) 65◦ (46%)

Ankle Offset 75◦ 85◦ 110◦

Amplitude 60◦ (43%) 40◦ (29%) 40◦ (29%)

Table 4.4: Overview about the offset and amplitude properties of the trajectory graphs

shown in figure4.17. The percentage is related to the sum of hip, knee and ankle am-

plitude and gives a (weak) characterization, how the joints are used during walking

motion.

floor or small changes on the robot’s body causing interferences and/or changes in

the body’s pendulum frequency will sensitively disequilibrate the walking motion.

Note that target trajectory of the neural oscillator differs partly a lot from the real

trajectories in the case of knee and ankle joint. This is due to the joint’s working

range limits and leads to joint motions up to the joint stops, which are visible in

the chopped off peaks. In general such a behavior should be avoided for reasons of

mechanical stress.

Further differences can be seen in the shape of the trajectories: The human walk-

ing motion is characterized by two trajectory’s peaks at the knee and ankle joint per

one full step - one in the support phase, where the corresponding leg is carrying the

body, and one in the swing phase, where the leg is repositioned to the start point of

the support phase. Both bending motions are used for bring the foot into line with

the floor while keeping the hip’s height more or less constantly. Particulary a similar

shape can be observed at the N2 individual (compare N2 ankle joint trajectory). The

neural oscillator is due to its topology not capable to generate more complex shapes

than single amplitude ones.

4.5 Short Excursion: Other Tasks

As mentioned in section3.4.4.1, the presented simulation environment allows to

plug easily different task modules to the evolution setup. This enables evolving

different behaviors, without touching the underlying motion generation structure.

4.5. SHORT EXCURSION: OTHER TASKS 61

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000

R
ot

at
io

ns
 [1

/2
5s

]

Generation

Rotations of individuals per generation (Neural Controller)

max
ave
min

 0

 1

 2

 3

 4

 0 2000 4000 6000 8000 10000 12000 14000

C
ov

er
ed

 d
is

ta
nc

e
[m

/2
5s

]

Generation

Covered distance of individuals per generation (Neural Controller)

max
ave
min

Figure 4.18: Fitness developing of evolution runs applying turning (above) and right-

wards walking (below) task. The underlying motion generation is a neural oscillator

architecture, without symmetry reductions.

As instance, two examples demonstrate the evolving of alternative tasks. As motion

generation approach the neural oscillator is applied. Since the movements solving

these tasks in general do not have symmetric characteristics between left and right

sided joints, no symmetry assumption was applied.

Figure4.18(above) shows the fitness development of a turning task: The fitness

value is given by the covered turning angle of an individual during one episode of

25s. The graph displays the number of complete rotations. An episode is aborted, if

the individual falls (hip height 0.10m below the initial value), or if it gets off of its

62 CHAPTER 4. MOTION GENERATION

initial position (hip has to be within a 0.20mcircle around its initial position). As to

see, within 12.000 generations individuals are able to turn up to more than 13 turns

around its z-axis in one episode.

Figure4.18(below) shows the fitness development of a sidewards walking task:

The task is defined analog to the forward walking task, except that the stated walk-

ing direction was set to rightwards. Thus, the fitness value is given by the covered

distance along the right side axis (center of both feet centers). Within 14.000 gener-

ations, individuals covered a distance up to 4m in one episode.

Chapter 5

Knowledge Transfer to Real

Hardware

The overall long-term objective of this work is to enhance the real robot’s motion be-

havior. This includes questions about appropriate controlling and motion generation

architectures as well as the retrieval and optimizing of motion pattern parameters.

This chapter deals with the question, how the simulation and its results may help

enhancing real robot’s motions.

5.1 Types of Knowledge

The purpose of the simulation and its experiments is the acquisition of new knowl-

edge. In literature, different types of knowledge are introduced [40]. The definitions

of the individual knowledge types refer to human knowledge and due to their defini-

tion base it would be somehow arbitrary to apply this classification into the field of

robotics. Nevertheless, with a brief statement it is reasonable to classify the knowl-

edge outcome of the simulation experiments into different levels, because each level

has a different transfer quality. Regarding this work’s simulation, basically three lev-

els of knowledge get touched: Knowledge about (concrete) motion parameter sets,

about (potentially appropriate) controlling architectures and about (potentially ap-

propriate) experimental setups.

A motion parameter set describes explicitly a certain motion pattern. This type

is both the simplest and most concrete knowledge of all three levels. The transfer

qualification of this knowledge type requires highest congruence between simula-

64 CHAPTER 5. KNOWLEDGE TRANSFER TO REAL HARDWARE

tion and real world behavior. Given a real world matching simulation, each evolved

individual corresponds to knowledge about a possible solution in real world. In a

slightly more abstract manner, it specifies the relation between the parameters and

the shapes of the joint’s trajectories.

A more abstract level of knowledge is given by knowledge about a task-

applicable controlling architecture. It describes a general structure that is potentially

able to accomplish a certain task, without giving a certain instance (parameter set)

of the structure that performs the task. Within a given control architecture, several

solutions may be found, defined by an individual parameter set. Its transfer qual-

ity requires less congruence between simulation and real world behavior, since the

control architecture should be independent of a concrete robot behavior instance.

The most abstract level regarding the simulation’s outcome is the knowledge

about potentially appropriate experimental setups, that could generate new (lower

level) knowledge. In literature this type of knowledge is also known asmeta-

knowledge[40] - which includes among other knowledge about how to gather new

knowledge. Similar to the controlling-architectures, its transfer quality requires less

congruence between simulation and real world behavior, since the experimental

setup should be indepent of a concrete robot/world behavior instance.

5.2 Motion Export

Up to the time of the real robot experiments, the implemented controlling frame-

work of the real robot only supported the keyframe-transition technique. However,

to transfer and test any trajectory driven motion of the simulation, the target tra-

jectories can be recorded into a keyframe-transition structure. This is done by the

keyframe exporter(see figure5.1) which is connected to the PID controllers of the

joints. The exporter is able to linearly record a motion behavior, within a certain time

span and with a configurable time resolution. Further it is able to extract a period

(e.g. full step period) of a motion pattern in order to generate a cyclic keyframe-

transition structure.

5.3. EXPERIMENTS AND RESULTS 65

Simulation Environment

Simulated
Physical World

BioloidPID
Controller

Keyframe
Controller

Sine Nx
Controller

Neural
Controller

Keyframe
Structure

Parameter
Vector

Parameter
Vector

Controller
Interface

Keyframe
Exporter

Keyframe
Structure

Figure 5.1: Exporting of simulation results: The keyframe exporter module tracks all

target joint trajectories during a motion and records correspondend keyframes at a con-

figurable time resolution.

 152

 154

 156

 158

 160

 162

 164

 166

 1.5 2 2.5 3 3.5

A
ng

le
 [o]

Time [s]

Keyframe trajectory sampling (right knee, N2)

original target trajectory
keyframe target trajectory

Figure 5.2: Example of sampling a N2 knee’s target trajectory with a samling frequency

of 10Hz. Note that the target angles of the keyframes are quantized to the AX-12 servo

motor’s control graduation (approx. 0.29◦).

5.3 Experiments and Results

Within the real robot experiments, motion behaviors generated by both, the cyclic

function controller and the neural oscillator controller were transfered and tested

at different time resolutions (0.02s...0.1s). To cut a long story short, none of the

66 CHAPTER 5. KNOWLEDGE TRANSFER TO REAL HARDWARE

Figure 5.3: Transfer of motion pattern to hardware: The generated motion on the real

robot is similar to the simulated one, as long as it acts free (above). The ’grounded’ real

robot needs manual help in contrast to its simulated counterpart (below).

transfered motions could generate a robust walking pattern. In general the robot was

able to reproduce all transfered motions – as long as the robot moves freely (hold

detached from ground), the ”visible” characteristic is quite similar to the simulated

one. Touching the ground changes the phenotype of the motion a lot.

We identified two major problems, causing serious gaps between simulation

and real world behavior: One refers to the grave gears tolerances and the other to

the non-linear motion characteristics of the servo motors. Further differences could

be observed in the stiffness of the robot parts, in particular of the legs, and in the

floor friction properties.

Manual modifications could slightly enhance the real robot motions: Motions,

where feet move closely to one another tend to clink together due to the tolerances

5.4. DISCUSSION 67

and the robot begins to stumble, could be ’repaired’ by slightly adjusting the offset

of the hip joint trajectories.

5.4 Discussion

The transfer experiments showed, that the present version of simulation do not

match real world behavior sufficiently for transfer (raw) parameters set in order to

reproduce evolution results on the real robot. The existing gap is mainly caused by

the simplified modeling of the robot, in particular the modeling of the servo motor

joints. To exemplify the problem of the tolerances in general: It is not even possible

to pose the robot stably standing on one foot with all joints fixed at a certain posi-

tion. Thus, the underlying target system has some issues which make it potentially

difficult to generate a robust biped walking motion.

A more promising way of knowledge transfer is given at the knowledge about

controlling architectures: The simulation showed, that the proposed controllers are

potentially appropriate for biped walking generation on real robots. Actually, a con-

trolling framework allowing to apply the neural oscillator approach is going to be

implemented on real robot.

The successfully applied experimental setups and evolution paramters constitute

the (procedural) meta-knowledge about how to potentially obtain parameter solu-

tions. This knowledge may help finding appropriate experimental setups for real

hardware experiments. Furthermore, with a given similarity between real and sim-

ulated world, real world experiments could start evolution runs at already evolved

(optimized) individuals of the simulation run and in that way shorten hardware ex-

periments.

For enhancing the transfer results, two points should be worked out:

• Enhancing of the modeling, in particular the servo motor joints. This includes

the question for an appropriate model of the servo motor’s behavior, as well

as appropriate experiments, to determine all relevant parameters of the model.

• Enhancing of the evolution results. The processed tasks of the evolution re-

ward only the covered distance of an individual’s run. After generating fast

walking motions, the motions should now be stabilized by either enhancing

the fitness function by additional stability criteria (e.g. by utilizing sensory

68 CHAPTER 5. KNOWLEDGE TRANSFER TO REAL HARDWARE

data) and/or by providing ”harder” environments to complicate the given

problem (e.g. by rough floors, impacts, etc.).

Chapter 6

Conclusions

The subject of biped motion is a wide complex topic, that could not be handled

in one single thesis. Within a small application range, this thesis exemplifies the

use of physical simulation to study controller models. This section summarizes and

discusses the work and gives a review about possible continuing topics that could

carry on the processed work.

6.1 Summary and Discussion

Physical simulation is a promising method, to study and explore real world prob-

lems of complex biped robots. Especially when applying extensive machine learn-

ing or evolutionary algorithms it can save hardware stress, it may provide exhaustive

state informations, enables parallelizing of experiments and permits unsupervised

experiments in multiple realtime. Condition precedent to reusable results is an ac-

curate modeling and continuous comparing between simulation and real world be-

havior.

The thesis on hand exemplifies a possible way of exploring biped motion gener-

ation using physical simulation. It presents a software environment, which simulates

the introduced target system - the 19 DoF Bioloid robot. The modular environment

is designed for exploring different motion generation approaches, as well as for

applying artificial evolution to solve or optimize given motion problems.

Due to the scope of this thesis, the model of the robot used in the simulation was

kept in a quite simplified level compared to the complexity of the real robot. How-

ever, the simulation is capable to reproduce real worlds behavior, which is shown

70 CHAPTER 6. CONCLUSIONS

by the transfer of real robot motions to the simulated one with similar results (see

section3.4.3.3).

The thesis introduces two approaches of motion generation, that could be suc-

cessfully applied for the simulated biped robot. Within the simulation environment

the approaches were implemented as controller modules. It is shown, that both are

applicable to generate walking patterns for the simulated biped robot. The work

demonstrates, how the parameters for the given robot may be found and optimized

with the appliance of evolutionary algorithms. Furthermore, the setup of the artifi-

cial evolution is able to optimize the parameters for other tasks than walking as well.

Some results of the processed evolutions are summarized at the ”Simloid” website

[7].

The implemented controllers were capable to generate a robust biped walking

with a comparable high walking speed up to 0.51m/s. They do not use any sen-

sory information. Particularly the properties and advantages of the neural oscillator

approach are outlined and it is shown, how the neural oscillators may synchronize

with sensory information.

In laboratory experiments, some evolved motions were transfered to the real

robot. Due to divergence between simulated and real world behavior, none of the

transfered motions could generate a robust biped walking pattern on the real robot.

Nevertheless, it is outlined, how simulation may enhance real robot motions. In gen-

eral, the presented approaches may be applied to any biped robot with the possibility

of trajectory driven joints.

As another application, the simulation environment was used in a students lab-

oratory [33]. The software allows to control the simulation by an external program.

The applied communication protocol allows to use any programming language sup-

porting this protocol to control the simulation. Within the laboratory, students had

to solve different isolated tasks, e.g. balancing or stabilizing of the robot. More-

over, the implemented communication protocol allows to switch between the target

trajectory driven approach and the torque driven approach to control the joints.

6.2 Outlook

The presented work constitutes only a first step, using simulation to explore and

optimize different controller models of the Bioloid robot. There were several points,

6.2. OUTLOOK 71

which either touch ”unknown territory” or have to be improved for having a better

outcome. Some of the most important points are reviewed in the following. Mainly

they can be categorized into conceptual and technical matters.

6.2.1 Conceptual

Exploring Sensor Feedback.As mentioned above, the presented walking controllers

do not incorporate any sensory information. Sensor feedback is essential for react-

ing on any environmental information. This topic includes for one thing the explor-

ing of appropriate sensors (e.g. touch or acceleration sensors) and for another thing

how to incorporate the sensor information into the motion generation. Section4.3.6

proposes and exemplifies two concepts, how sensory data may be incorporated into

the neural oscillator controller approach.

Stabilizing Individuals.The evolution setup and chosen fitness function is de-

signed for getting fast individuals. More important than fast individuals – even for

the gap between simulation and real world – would be to get and explore robust

walking pattern. This means individuals, which are insensitive to environmental ef-

fects, such as roughness of the floor or small impacts caused e.g. by collisions with

other robots. This could be done by enhancing episodes to be processed: A random-

ized environment with small obstacles, holes or roughness may help finding robust

motion pattern. Sensor feedback would be essential as well as enhancing the fitness

function, e.g. by adding additional sensor data based terms.

Exploring Alternative Neural Net Architectures.This work demonstrates, that

even simple neural nets are powerful for generating biped walking motion pattern.

However, the presented architecture is limited to single frequency oscillations. Ana-

log to the Fourier series approach, the neural net topology may be enhanced en-

abling more complex wave shapes. As shown in figure4.17, human walking trajec-

tories are described by terms of at least double frequency, whereas the presented

neural topology only enables single amplitude shapes.

6.2.2 Technical

Distributed Evolution. The presented simulation environment is single threaded.

This means, one evolution run is limited to one process. Artificial evolution is good

for parallelizing, since each episode is indepent from all others within one genera-

72 CHAPTER 6. CONCLUSIONS

tion. Distributing the evolution among several processes will accelerate the whole

run linearly with the number of processes, as long as the number of processes do

not exceed the number of individuals per generation.

Modeling ODE Tolerance Joints.As already stated, one major reason of the

gap between simulation and real world is the missing of tolerance effects of the

servo motors in the simulation. Unlike simulation, real servo motors have toler-

ances mainly caused by the gears inside of each servo. The effect of the tolerance

grows with leverage that effect a servo motor. Thus, the movement of e.g. the ankle

joints is strongly influenced by these tolerances. Elaborating an appropriate model,

describing all servo motors characteristics may enhance and validate the physical

simulation a lot.

Scene Description Language Support.At present, the whole scene, includ-

ing the environment as well as the robot, is described within the program source

code (Scene Description Module, see section3.4.2). Changing the environment’s

parameter or the setup of the robot requires a source code modification and a re-

compilation. From point of conceptual view, the scene description should be sep-

arated from program source code. This could be done by implementing a parser,

supporting a scene description language. As reference, see [6].

6.3 Acknowledgments

The author would like to thank Hans-Dieter Burkhard, who enabled to write this

thesis within its artificial intelligence laboratory. Special thanks to Manfred Hild for

supervising me and my work, and for all the beneficial brainstorming during many

coffee breaks. More and further thanks to Ralf Berger for a lot of helpful advises and

the nice teamwork within our simulation team. Special thanks to Benjamin Werner

who arranged and performed the real hardware experiments. Christian Thiele wrote

the ”Motion Editor”, which was applied for the real robot experiments. The mem-

bers of the Humanoid Team Humboldt assembled, maintained and enhanced the

Bioloid robot kits. Finally I am grateful for my family – my parents, Jana and my

little Karla for supporting me during all the work.

Appendix A

Evolution Setups and Parameters

Evolution Fig. 4.5, above Fig. 4.5, center Fig 4.5, below

Controller Type Cyclic Functions, symmetric

N = 1 N = 2 N = 3

Task Forward (fitness=distance)

#Parameters 31 51 71

Parameter Range −π . . . + π

Step Length 0.02s

Episode Duration 25s

Initialization Gaussian distributed,mean= 0.0,σ = 0.01

Population Size 50

Selection Size 15

Crossover/Copy Crossover

Individual Mutation 0.5

Probability

Gene Mutation Probability 0.2

Gene Mutation Type Gaussian distributed,σ = 0.05

Start Fitness 0.0 0.0 0.0

Best Fitness (Generation) 1.74 (7,928) 3.18 (20,970) 2.33 (23,551)

Processed Generations 20,272 55,066 24,800

Calculation Time 8d 18h 20d 15h 11d 8h

Table A.1: Parameters for bootstrap evolutions with cyclic function controller (Figure

4.5).

73

74 APPENDIX A. EVOLUTION SETUPS AND PARAMETERS

Evolution Fig 4.6, center Fig 4.6, below

Controller Type Cyclic Functions, symmetric

N = 2 N = 3

Task Forward (fitness=distance)

#Parameters 51 71

Parameter Range −π . . . + π

Step Length 0.02s

Episode Duration 25s

Initialization Initialized by Initialized by

best ofN = 1 best of fig.4.6, center

(Gaussian noised with (Gaussian noised with

σ = 0.000001) σ = 0.000001)

Population Size 50

Selection Size 15

Crossover/Copy Copy

Individual Mutation 0.95

Probability

Gene Mutation Probability 0.1 0.05

Gene Mutation Type Gaussian distributed, Gaussian distributed,

σ = 0.01 σ = 0.008

Start Fitness 1.74 7.43

(without Gaussian noise) (without Gaussian noise)

Best Fitness (Generation) 7.43 (44,175) 8.07 (26,791)

Processed Generations 50,470 40,001

Calculation Time 22d 8h 14d 7h

Table A.2: Parameters for incremental evolutions with cyclic function controller (Fig-

ure4.6).

75

Evolution Fig. 4.10, above Fig. 4.10, center Fig 4.10, below

Controller Type Neural Oscillator Neural Oscillator, symmetric

Task Forward (fitness=distance)

#Parameters 61 34 34

Parameter Range −4.0 . . . + 4.0

Step Length 0.01s 0.01s 0.005

Netupdate Time 0.05s

Episode Duration 25s

Initialization Gaussian distributed, Best of

mean= 0.0,σ = 0.01 Fig. 4.10,center

(Gaussian noised with

σ = 0.000001)

Population Size 50

Selection Size 15 15 5

Crossover/Copy Copy

Individual Mutation 0.9

Probability

Gene Mutation Probability 0.1

Gene Mutation Type Gaussian Gaussian Gaussian

distributed, distributed, distributed,

σ = 0.01 σ = 0.01 σ = 0.001

Start Fitness 0.0 0.0 10.63

Best Fitness (Generation) 1.28 (5,415) 10.63 (9,039) 10.71 (8,063)

Processed Generations 11,407 13,232 9,764

Calculation Time 15d 16h 12d 6h 34d 17h

Table A.3: Parameters for evolutions with neural oscillator controller (Figure4.10).

76 APPENDIX A. EVOLUTION SETUPS AND PARAMETERS

Evolution Fig 4.18, above Fig 4.18, below

Controller Type Neural Oscillator

Task Turn Rightwards

(fitness=angle) (fitness=distance)

#Parameters 34 34

Parameter Range −4.0 . . . + 4.0

Step Length 0.01s

Netupdate Time 0.05s

Episode Duration 25s

Initialization Gaussian distributed,mean= 0.0,σ = 0.01

Population Size 50

Selection Size 15

Crossover/Copy Copy

Individual Mutation 0.90

Probability

Gene Mutation Probability 0.1

Gene Mutation Type Gaussian distributed,σ = 0.01

Start Fitness 0.0 0.0

Best Fitness (Generation) 566.61◦ (10,332) 4.32 (13,865)

Processed Generations 17,593 18,062

Calculation Time 20d 7h 20d 7h

Table A.4: Parameters for evolutions with neural oscillator controller (Figure4.18).

Bibliography

[1] Simulating Pathological Gait using the Enhanced Linear Inverted Pendulum

Model. Taku Komura, Akinori Nagano, Howard Leung, Yoshihisa Shinagawa,

2004.

[2] A. J. Ijspeert.Locomotion, Vertebrate, pages 649–654. MIT Press, 2 edition,

2002.

[3] A.J. Ijspeert and J.-M. Cabelguen. Gait transition from swimming to walking:

Investigation of salamander locomotion control using nonlinear oscillators.

Technical report, Swiss Federal Institute of Technology, 2002.

[4] Akinobu Fujii, Akio Ishiguro and Peter Eggenberger. Evolving a CPG con-

troller for a biped robot with neuromodulation. InProceedings of the 5th In-

ternational Conference on Climbing and Walking Robots, pages 17–24, Paris,

France, 2002.

[5] Alex M. Andrew. Understanding Intelligence, by Rolf Pfeifer and Christian

Scheier, MIT Press, Cambridge, Mass., 1999, ISBN 0-262-16181-8.Robotica,

18(6):687–689, 2000.

[6] OSG Community. Homepage of the OpenSceneGraph project.

http://www.openscenegraph.org.

[7] Daniel Hein, Ralf Berger. Homepage of Simloid Project

http://www.robocup.de/AT-Humboldt/simloid.shtml.

[8] Dare A. Wells.Theory and Problems of Lagrangian Dynamics. McGraw-Hill,

New York, 1967.

78 BIBLIOGRAPHY

[9] G. T. Fallis. 1888. U. S. Patent No. 376588,

Available at http://www.tam.cornell.edu/.ruina/hplab.

[10] François Chapeau-Blondeau, Gilbert A. Chauvet. Stable, oscillatory, and

chaotic regimes in the dynamics of small neural networks with delay.Neu-

ral Networks, 5(5):735–743, 1992.

[11] Frank Pasemann, Manfred Hild, Keyan Zahedi. SO(2)-Networks as Neural

Oscillators. InIWANN (1), pages 144–151, 2003.

[12] Gen Endo, Jun Nakanishi, Jun Morimoto, and Gordon Cheng. Experimental

studies of a neural oscillator for biped locomotion with QRIO. InIEEE 2005:

International Conference on Robotics& Automation, 2005.

[13] Hillel J. Chiel, Randall D. Beer, John C. Gallagher. Evolution and Analysis of

Model CPGs for Walking: I. Dynamical Modules.Journal of Computational

Neuroscience, 7(2):99–118, 1999.

[14] Humanoid Team Humboldt. Homepage of Humanoid Team Humboldt.

http://www.humanoidteamhumboldt.de.

[15] Jerry E. Pratt. Exploiting inherent robustness and natural dynamics in the

control of bipedal walking robots. PhD thesis, 2000. Supervisor-Gill A. Pratt.

[16] Jin’ichi Yamaguchi, Eiji Soga, Sadatoshi Inoue, Atsuo Takanishi. Develop-

ment of a Bipedal Humanoid Robot: Control Method of Whole Body Coop-

erative Dynamic Biped Walking. InIEEE 1999: International Conference on

Robotics& Automation, pages 368–374, 1999.

[17] Joshua Clifford Bongard and Hod Lipson. Nonlinear System Identification

Using Coevolution of Models and Tests.IEEE Trans. Evolutionary Computa-

tion, 9(4):361–384, 2005.

[18] K. Endo, T. Maeno, and H. Kitano. Co-evolution of morphology and walking

pattern of biped humanoid robot using evolutionary computation - considera-

tion of characteristic of the servomotors. InIEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS’2002), pages 787–792, 2002.

Sponsor: Swiss National Science Foundation.

BIBLIOGRAPHY 79

[19] K. J. Astrom and T. Hagglund.PID Controllers: Theory, Design, and Tuning,

2nd Ed.The Instrument, Systems, and Automation Society, Research Triangle

Park, NC, 1995.

[20] K. Osuka. Dynamics based control of mechanical systems. InIEEE/ASME

International Conference on Advanced Intelligent Mechatronics, pages 566–

570, Piscataway, NJ, 2001. IEEE Press.

[21] Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M.,

Akachi, K., and Isozumi, T. Humanoid Robot HRP-2. InIEEE 2004: Inter-

national Conference on Robotics& Automation, pages 1083–1090, 2004.

[22] Kazuo Hirai, Masato Hirose, Yuji Haikawa, Toru Takenaka. The Development

of Honda Humanoid Robot. InICRA, pages 1321–1326, 1998.

[23] Kensuke Harada, Shuuji Kajita, Kenji Kaneko, and Hirohisa Hirukawa. ZMP

Analysis for Arm/Leg Coordination. InIEEE/RSJ 2003: Intl. Conference on

Intelligent Robots and Systems, 2003.

[24] Kiyotoshi Matsuoka. Mechanisms of frequency and pattern control in the

neural rhythm generators.Biological Cybernetics, 56(5–6):345–353, 1987.

[25] Kyosuke Ono, Takasahi Furuichi, Ryutaro Takahashi. Self-Excited Walking

of a Biped Mechanism with Feet.I. J. Robotic Res., 23(1):55–68, 2004.

[26] M. Vukobratovic, B. and Borovac. Zero-Moment Point – Thirty five years of

its life. International Journal of Humanoid Robots, 1(1):157–173, 2004.

[27] M. Wisse, A. L. Schwab, R. Q. van der Linde. A 3D passive dynamic biped

with yaw and roll compensation.Robotica, 19(3):275–284, 2001.

[28] Martin Golubitsky, Ian Stewart, Pietro-Luciano Buono, J. J. Collins. A modu-

lar network for legged locomotion.Phys. D, 115(1-2):56–72, 1998.

[29] Martin Lötzsch and Joscha Bach and Hans-Dieter Burkhard and Matthias Jün-

gel. Designing Agent Behavior with the Extensible Agent Behavior Specifica-

tion Language XABSL. In Daniel Polani, Brett Browning, Andrea Bonarini,

and Kazuo Yoshida, editors,RoboCup 2003: Robot Soccer World Cup VII,

volume 3020. Springer, 2004.

80 BIBLIOGRAPHY

[30] Masaki Ogino. Embodiment Approaches to Humanoid Behavior – Energy

efficient walking and visuo-motor mapping. PhD thesis, Osaka University,

January 2005.

[31] Oliver Obst, Markus Rollmann. SPARK – A Generic Simulator for Physical

Multiagent Simulations.Computer Systems Science and Engineering, 20(5),

September 2005.

[32] Paul du Bois Reymond. Über die Fourierschen Reihen.Nachrichten von der

Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität

zu Göttingen, (21):571–582, 1873.

[33] Prof. Dr. H.-D. Burkhard. Homepage of Students Laboratory ”Modern Ap-

proaches of Artificial Intelligence”, HU Berlin 2006.

http://www.ki.informatik.hu-berlin.de/lehre/ss06/mmki-prakt_html.

[34] Ralf Berger. Die Doppelpass-Architektur - Verhaltenssteuerung autonomer

Agenten in dynamischen Umgebungen. Diploma thesis, Institut für Infor-

matik, Humboldt Universität zu Berlin, 2006.

[35] Randall D. Beer, Hillel J. Chiel, John C. Gallagher. Evolution and Analysis

of Model CPGs for Walking: II. General Principles and Individual Variability.

Journal of Computational Neuroscience, 7(2):119–147, 1999.

[36] Rechenberg, I. .Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, GER,

1973.

[37] Richard Reeve.Generating walking behaviours in legged robots. PhD thesis,

University of Edinburgh, 1999.

[38] Robert Haschke, Jochen J. Steil, Helge Ritter. Controlling Oscillatory Be-

haviour of a Two Neuron Recurrent Neural Network Using Inputs. InProc. of

the Int. Conf. on Artificial Neural Networks (ICANN), Wien, Austria, 2001.

[39] RoboCup. Homepage of Robocup Federation. 1997. http://www.robocup.org.

[40] Roland Arbinger.Psychologie des Problemlösens. Primus Verlag, Darmstadt,

1997.

BIBLIOGRAPHY 81

[41] Russel Smith.Open Dynamics Engine v0.5 User Guide.

http://www.ode.org, 2006.

[42] S. H. Collins, M. Wisse, and A. Ruina. A 3-D passive-dynamic walking robot

with two legs and knees.The International Journal of Robotics Research,

20(7):607–615, 2001.

[43] S. Hashimoto, S. Narita, H. Kasahara et al. Humanoid Robots in Waseda

University–Hadaly-2 and WABIAN.Auton. Robots, 12(1):25–38, 2002.

[44] Yasuo Kuniyoshi Akihiko Nagakubo Seiichi Miyakoshi, Gentaro Taga. Three

Dimensional Bipedal Stepping Motion Using Neural Oscillators — Towards

Humanoid Motion in the Real World. InProceedings of IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 84–89, Piscat-

away, NJ, 1998. IEEE Computer Society.

[45] Shuuji Kajita and Kazuo Tani. Adaptive Gait Control of a Biped Robot Based

on Realtime Sensing of the Ground Profile.Auton. Robots, 4(3):297–305,

1997.

[46] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, K. Yokoi, H. Hirukawa. The

3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walk-

ing Pattern Generation. InIEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 239–246, 2001.

[47] Thomas A. McMahon Simon Mochon. Ballistic Walking.J. Biomechanics,

13(1):49–57, 1980.

[48] Russell Smith. Homepage of Open Dynamics Engine project.

http://www.ode.org.

[49] Squin, Carlo H. SDL: Scene description language.

[50] Sten Grillner. Neurobiological Bases of Rhythmic Motor Acts in Vertebrates.

Science, 228(4696):143–149, 1985.

[51] Sten Grillner. Neural Networks for Vertebrate Locomotion.j-SCI-AMER,

274(1):48–53 (Intl. ed.), Jan 1996.

82 BIBLIOGRAPHY

[52] Tad McGeer. Passive dynamic walking.International Journal of Robotics

Research, 9(2):62–82, 1990.

[53] Tad McGeer. Passive Walking with Knees. InIEEE 1990: International Con-

ference on Robotics& Automation, pages 1640–1645, 1990.

[54] Thomas A. McMahon.Muscles, Reflexes, and Locomotion. Princeton Univer-

sity Press, Princeton, New Jersey, 1984.

[55] Thompson, John M. T., Stewart, H. Bruce.Nonlinear Dynamics and Chaos.

John Wiley & Sons, Chichester, 2nd edition edition, 2002.

[56] Toyota Motor Corporation. Homepage of Toyota Motor Corporation.

http://www.toyota.co.jp/jp/special/robot/.

[57] University of Jena, Institute of Sport Science. Homepage of Locomotion Lab-

oratory.

http://www.lauflabor.de.

[58] Yoshihiro Kuroki, Masahiro Fujita, Tatsuzo Ishida, Ken’ichiro Nagasaka,

Jin’ichi Yamaguchi. A small biped entertainment robot exploring attractive

applications. InICRA, pages 471–476, 2003.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.2 Related Work
	1.2.1 Model Based Approach
	1.2.1.1 ZMP Based Approaches
	1.2.1.2 Inverted Pendulum Model

	1.2.2 Dynamics Based Approach
	1.2.2.1 Passive Dynamic Walking
	1.2.2.2 Central Pattern Generator
	1.2.2.3 Ballistic Walking

	1.3 Outline

	2 Bioloid Robot
	2.1 RoboCup
	2.2 Bioloid
	2.3 Comparing Joint Drives

	3 Simulation Environment
	3.1 Motivation
	3.2 ODE
	3.2.1 Body and Joint Primitives
	3.2.2 Collision Detection
	3.2.3 Simulation Loop

	3.3 Simloid - Simulation of the Bioloid
	3.3.1 Simulation of servo motor joints
	3.3.2 Comparing Bioloid - Simloid

	3.4 Architecture
	3.4.1 Simulated World and Main Loop
	3.4.2 Scene Description Module
	3.4.3 Controller Module
	3.4.3.1 PID Controller
	3.4.3.2 TCP Controller
	3.4.3.3 Keyframe Controller
	3.4.3.4 Sine Nx Controller
	3.4.3.5 Neural Oscillator Controller

	3.4.4 Evolution Module
	3.4.4.1 Task Modules

	3.4.5 Simulation speed

	4 Motion Generation
	4.1 Keyframe-Transition Approach
	4.2 Cyclic Function Approach
	4.2.1 Partial Fourier Series
	4.2.2 Symmetry Assumption
	4.2.3 Evolution Setup and Results
	4.2.3.1 Bootstrap Evolutions
	4.2.3.2 Incremental Evolutions

	4.3 Neural Oscillator Approach
	4.3.1 Two Neuron Networks
	4.3.2 SO(2)-Networks
	4.3.3 Controller Topology
	4.3.4 Symmetry Assumption
	4.3.5 Evolution Setup and Results
	4.3.6 Sensor Coupling
	4.3.6.1 Harmonic Synchronization
	4.3.6.2 Impulse Synchronization

	4.4 Comparing Joint Trajectories
	4.5 Short Excursion: Other Tasks

	5 Knowledge Transfer to Real Hardware
	5.1 Types of Knowledge
	5.2 Motion Export
	5.3 Experiments and Results
	5.4 Discussion

	6 Conclusions
	6.1 Summary and Discussion
	6.2 Outlook
	6.2.1 Conceptual
	6.2.2 Technical

	6.3 Acknowledgments

	A Evolution Setups and Parameters
	Bibliography

